Less force will be necessary to overcome inertia for the 80 kg piece of furniture.
Force is a factor that has the power to alter an object's motion. A massed object's velocity can be changed or accelerated by a force. A push or a pull is a straightforward method to explain forces.
The term "moment of inertia" refers to the quantity that describes how a body resists angular acceleration and is calculated by multiplying each particle's mass by its square of the distance from the rotational axis.
I = mr², where m is the mass of the object and r is the distance to the rotation axis.
Therefore, The inertia is directly proportional to the mass of the object.
So, as the mass increases the inertia increases.
Therefore, 80 kg piece of furniture will require less force to overcome inertia.
Learn more about inertia here:
brainly.com/question/14460640
#SPJ9
The intensity of the magnetic force exerted on the wire due to the presence of the magnetic field is given by

where
I is the current in the wire
L is the length of the wire
B is the magnetic field intensity

is the angle between the direction of the wire and the magnetic field
In our problem, L=65 cm=0.65 m, I=0.35 A and B=1.24 T. The force on the wire is F=0.26 N, therefore we can rearrange the equation to find the sine of the angle:

and so, the angle is
Answer: As mass increases, acceleration decreases.
Answer:
The magnitude of the resultant vector is 22.66 cm and it has a direction of 29.33°
Explanation:
To find the resultant vector, you first calculate x and y components of the two vectors M and N. The components of the vectors are calculated by using cos and sin function.
For M vector you obtain:

For N vector:

The resultant vector is the sum of the components of M and N:

The magnitude of the resultant vector is:

And the direction of the vector is:

hence, the magnitude of the resultant vector is 22.66 cm and it has a direction of 29.33°
Answer:
The lever is a movable bar that pivots on a fulcrum attached to a fixed point. The lever operates by applying forces at different distances from the fulcrum, or a pivot. As the lever rotates around the fulcrum, points farther from this pivot move faster than points closer to the pivot.
IF HELPED MARK AS BRAINLIEST