The final speed of the car is 2) 150 m/s
Explanation:
Since the motion of the car is a uniformly accelerated motion, we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance covered
For the car in this problem, we have
u = 10 m/s

s = 7,467 m
Solving for v, we find the final velocity (and speed) of the car:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
3.34×10^-6m
Explanation:
The shear modulus can also be regarded as the rigidity. It is the ratio of shear stress and shear strain
can be expressed as
shear stress/(shear strain)
= (F/A)/(Lo/ . Δx)
Stress=Force/Area
The sheear stress can be expressed below as
F Lo /(A *Δx)
Where A=area of the disk= πd^2/4
F=shearing force force= 600N
Δx= distance
S= shear modulus= 1 x 109 N/m2
Lo= Lenght of the cylinder= 0.700 cm=7×10^-2m
If we make Δx subject of the formula we have
Δx= FLo/(SA)
If we substitute the Area A we have
Δx= FLo/[S(πd^2/4]
Δx=4FLo/(πd^2 *S)
If we input the values we have
(4×600×0.7×10^-2)/10^9 × 3.14 ×(4×10^-2)^2
= 3.35×10^-6m
Therefore, its shear deformation is 3.35×10^-6m
A=area of the disk= πd^2/4
= [3.142×(4×10^-2)^2]/4
Answer:
Mary's average speed is 0.42 meters/second.
Explanation:
Mary's total travel was 250 meters and the elapsed time was 10 minutes, equivalent to 600 seconds.
d = displacement = 80 meters + 125 meters + 45 meters = 250 meters
t = time = 10 minutes . 60 seconds/minute = 600 seconds
We can obtain now the average speed:
s = average speed = displacement / time = 250 meters / 600 seconds ≅ 0.4167 ≅ 0.42
That will depend on the units of the 3.0. We need to know if it's 3 feet, 3 yards, 3 meters, or 3 miles. Each one will have a different answer.