Well, we usually assume that the resistance of a circuit component
is constant and doesn't change. But the truth is that for anything
that conducts current, its resistance always increases somewhat
when it warms up.
For things like light bulbs, electric toasters, space heaters, electric
stove burners, the heat coils in a blow-dryer ... anything that's
designed to be really hot when it's doing its job ... the resistance
of those things increases significantly when they come up to their
operating temperatures.
Answer:
P = 3800 W
Explanation:
Power is equal to energy divide by time P = E/t
plug in 4560000 J for energy
convert 20 minutes to seconds
20 * 60 = 1200 seconds
plug in 1200 seconds for time
P = 4560000/1200
P = 3800 W
Yes. Kinetic energy is a form of mechanical energy and friction will turn that kinetic energy into heat.
Answer:
Ohms law
Explanation:
Which states that the current flowing through any cross-section of the conductor is directly proportional to the potential differenceapplied across its end, provided physical conditions like temperature and pressure remain constant.
Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to
for θ
I(x) =
y²p dA
I(x) =
(a sinθ)²(k × a²) adθda
I(x) = k
da ×
(sin²θ)dθ
I(x) = k
da ×
(1-cos2θ)/2 dθ
I(x) = k
×
I(x) = k ×
× (
I(x) = k ×
×
I(x) = 1444×k ×
.....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k ×
......................2