The second diver have to leap to make a competitive splash by 4.08 m high.
<h3>What is potential energy?</h3>
The energy by virtue of its position is called the potential energy.
PE = mgh
where, g = 9.81 m/s²
Given is the diver jumps from a 3.00-m platform. one diver has a mass of 136 kg and simply steps off the platform. another diver has a mass of 100 kg and leaps upward from the platform.
The potential energy of the first diver must be equal to the second diver.
P.E₁ = P.E₂
m₁gh₁ = m₂gh₂
Substitute the vales, we have
136 x 3 = 100 x h₂
h₂ = ₂4.08 m
Thus, the second diver need to leap by 4.08 m high.
Learn more about potential energy.
brainly.com/question/24284560
#SPJ1
Explanation:
the vehicles displacement, since displacement deals with position
Answer:
Answers A and D are the correct solution.
Explanation:
Both pots have the same mass and the same velocity vector.
the only difference between A and D is the selection of the reference frame positive direction.
Explanation:
36-4/4= 9 m/squared. meter per squared.
acceleration unit is meter per second Square.equation is velocity by time.for average final(36) minus initial(4)
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.