Answer:
T = 92.8 min
Explanation:
Given:
The altitude of the International Space Station t minutes after its perigee (closest point), in kilometers, is given by:

Find:
- How long does the International Space Station take to orbit the earth? Give an exact answer.
Solution:
- Using the the expression given we can extract the angular speed of the International Space Station orbit:

- Where the coefficient of t is angular speed of orbit w = 2*p / 92.8
- We know that the relation between angular speed w and time period T of an orbit is related by:
T = 2*p / w
T = 2*p / (2*p / 92.8)
Hence, T = 92.8 min
Answer:
A) The space time coordinate x of the collision in Earth's reference frame is
.
B) The space time coordinate t of the collision in Earth's reference frame is

Explanation:
We are told a rocket travels in the x-direction at speed v=0,70 c (c=299792458 m/s is the exact value of the speed of light) with respect to the Earth. A collision between two comets is observed from the rocket and it is determined that the space time coordinates of the collision are (x',t') = (3.4 x 10¹⁰ m, 190 s).
An event indicates something that occurs at a given location in space and time, in this case the event is the collision between the two comets. We know the space time coordinates of the collision seen from the reference frame of the rocket and we want to find out the space time coordinates in Earth's reference frame.
<em>Lorentz transformation</em>
The Lorentz transformation relates things between two reference frames when one of them is moving with constant velocity with respect to the other. In this case the two reference frames are the Earth and the rocket that is moving with speed v=0,70 c in the x axis.
The Lorentz transformation is




prime coordinates are the ones from the rocket reference frame and unprimed variables are from the Earth's reference frame. Since we want position x and time t in the Earth's frame we need the inverse Lorentz transformation. This can be obtained by replacing v by -v and swapping primed an unprimed variables in the first set of equations




First we calculate the expression in the denominator


then we calculate t




finally we get that

then we calculate x






finally we get that

Explanation:
The left side of the periodic table has elements that have less number of electrons in the valence shell.
These elements loose electrons easily.These elements appear as metals or metalloids in nature.These are hard solids.Their inter molecular forces are very strong.
The right side of the periodic table has elements that have more number of electrons in the valence shell.
These elements gain electrons easily.These elements appear as non metals most of which are gases.Their inter molecular forces are weak.
Answer:
Buoyant force = 3.0 N
The object will not float.
Explanation:
Apparent weight of a body immersed in water is the actual weight of object minus buoyant force
Given in the question that;
Weight of object in air = 7.0 N
Apparent weight of object = 4.0 N
4.0 N = 7.0 N - Buoyant force
Buoyant force = 7.0 - 4.0 = 3.0 N
In this case, the buoyant force is less than weight of the object thus the object will sink.
The law of energy conservation states that energy cannot be created or destroyed, so choices B to D are immediately invalid. Choice A can explain this occurrence: <u>A. Some of the energy is used to combat friction, and thus is transformed from mechanical energy to heat.</u>