Answer:
Speed of both blocks after collision is 2 m/s
Explanation:
It is given that,
Mass of both blocks, m₁ = m₂ = 1 kg
Velocity of first block, u₁ = 3 m/s
Velocity of other block, u₂ = 1 m/s
Since, both blocks stick after collision. So, it is a case of inelastic collision. The momentum remains conserved while the kinetic energy energy gets reduced after the collision. Let v is the common velocity of both blocks. Using the conservation of momentum as :



v = 2 m/s
Hence, their speed after collision is 2 m/s.
The correct answer is :
Unit vectors I and j along the x-axis and y-axis, respectively, define the Cartesian coordinate system. The radial unit vector r, which indicates the direction from the origin, and the unit vector t, which is orthogonal (perpendicular) to the radial direction, together create the polar coordinate system.
We can obtain the horizontal component by applying the trigonometric identity of Cos(Ф), and if we obtain the component on the x axle, such as 22000 (m)×Cos(51°) = x, we may determine that x = 13845.05 metres. We need to obtain the vector components because we already know the distance and the angle.
To learn more about Cartesian unit-vector refer the link:
brainly.com/question/26776558
#SPJ9
Coal and oil.... Fossil fuel is formed from decaying plants/animals who were buried and eventually converted to crude oil, gas by the exposure to heat and the pressure of the earths crust. This takes about 1 million years to happen.
Clever problem.
We know that the beat frequency is the DIFFERENCE between the frequencies of the two tuning forks. So if Fork-A is 256 Hz and the beat is 6 Hz, then Fork-B has to be EITHER 250 Hz OR 262 Hz. But which one is it ?
Well, loading Fork-B with wax increases its mass and makes it vibrate SLOWER, and when that happens, the beat drops to 5 Hz. That means that when Fork-B slowed down, its frequency got CLOSER to the frequency of Fork-A ... their DIFFERENCE dropped from 6 Hz to 5 Hz.
If slowing down Fork-B pushed it CLOSER to the frequency of Fork-A, then its natural frequency must be ABOVE Fork-A.
The natural frequency of Fork-B, after it gets cleaned up and returns to its normal condition, is 262 Hz. While it was loaded with wax, it was 261 Hz.
Answer:
D
Explanation:
Insulator is like rubber, it cant physically hold heat well