Answer:
I think he would be dead poggers
Explanation:
Complete Question
A person throws a pumpkin at a horizontal speed of 4.0 m/s off a cliff. The pumpkin travels 9.5m horizontally before it hits the ground. We can ignore air resistance.What is the pumpkin's vertical displacement during the throw? What is the pumpkin's vertical velocity when it hits the ground?
Answer:
The pumpkin's vertical displacement is 
The pumpkin's vertical velocity when it hits the ground is 
Explanation:
From the question we are told that
The horizontal speed is 
The horizontal distance traveled is 
The horizontal distance traveled is mathematically represented as

Where t is the time taken
substituting values

=> 

Now the vertical displacement is mathematically represented as

now the vertical velocity before the throw is zero
So


Now the final vertical velocity is mathematically represented as

substituting values


To solve the problem it is necessary to apply conservation of the moment and conservation of energy.
By conservation of the moment we know that

Where
M=Heavier mass
V = Velocity of heavier mass
m = lighter mass
v = velocity of lighter mass
That equation in function of the velocity of heavier mass is

Also we have that 
On the other hand we have from law of conservation of energy that

Where,
W_f = Work made by friction
KE = Kinetic Force
Applying this equation in heavier object.






Here we can apply the law of conservation of energy for light mass, then

Replacing the value of 

Deleting constants,

