Answer:
10 m/s
Explanation:
Momentum before collision = momentum after collision
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(8 kg)(8 m/s) + (6 kg)(6 m/s) = (8 kg)(5 m/s) + (6 kg) v
64 kg m/s + 36 kg m/s = 40 kg m/s + (6 kg) v
60 kg m/s = (6 kg) v
v = 10 m/s
Answer:
the can's kinetic energy is 0.42 J
Explanation:
given information:
Mass, m = 460 g = 0.46 kg
diameter, d = 6 cm, so r = d/2 = 6/2 = 3 cm = 0.03 m
velocity, v = 1.1 m/s
the kinetic energy of the can is the total of kinetic energy of the translation and rotational.
KE =
I ω^2 + 
where
I =
and ω = 
thus,
KE =
(
)^2 + 
=
+ 
=
+ 
= 
=
= 0.42 J
Answer:
1) The force Christian can exert on his bicycle before picking up the the cargo is 529.74 N
2) The force Christian can exert on his bicycle after picking up the the cargo is 647.46 N
Therefore, Christian has to exert more force on his bike after picking up the cargo
Explanation:
The given parameters are;
The mass of Christian and his bicycle = 54 kg
The mass of the cargo = 12 kg
1) The force Christian can exert on his bicycle before picking up the the cargo = Mass of Christian and his bicycle × Acceleration due to gravity
∴ The force Christian can exert on his bicycle before picking up the the cargo = 54 kg × 9.81 m/s² = 529.74 N
2) The force Christian can exert on his bicycle after picking up the the cargo = (54 + 12) kg × 9.81 m/s² = 647.46 N
Therefore, Christian has to exert more force on his bike after picking up the cargo.
Answer:
b) -10 m/s
Explanation:
In perfectly elastic head on collisions of identical masses, the velocities are exchanged with one another.
Answer:
570 N
Explanation:
Draw a free body diagram on the rider. There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.
The rider is moving at constant speed, so acceleration is 0.
Sum of the forces in the x direction:
∑F = ma
F cos 30° - T cos 15° = 0
F = T cos 15° / cos 30°
Sum of the forces in the y direction:
∑F = ma
F sin 30° - W - T sin 15° = 0
W = F sin 30° - T sin 15°
Substituting:
W = (T cos 15° / cos 30°) sin 30° - T sin 15°
W = T cos 15° tan 30° - T sin 15°
W = T (cos 15° tan 30° - sin 15°)
Given T = 1900 N:
W = 1900 (cos 15° tan 30° - sin 15°)
W = 570 N
The rider weighs 570 N (which is about the same as 130 lb).