Answer:
The ratio of electric force to the gravitational force is 
Explanation:
It is given that,
Distance between electron and proton, 
Electric force is given by :

Gravitational force is given by :

Where
is mass of electron, 
is mass of proton, 
is charge on electron, 
is charge on proton, 



So, the ratio of electric force to the gravitational force is
. Hence, this is the required solution.
Answer:
So A we cant sadly do because we cant draw. B is going to be kinetic. Thats because static friction means it stays in one place, for kinetic it means moving. So it will be 0.05 as the coefficient of the friction. Sadly, I cannot calculate C. You will have to use trigonemetry but I cannot fit that big an explanation.
Answer to A: the free body diagram would be the ski things inclined with gravity, friction, and air resistance. I except you know which directions
Answer to B: Kinetic friction is the answer.
Answer to C: Find on own, I cannot write super big explanations - use trigonometry.
Answer:
This is false.
Explanation:
Heat rash develops when some of your sweat ducts clog. Instead of evaporating, perspiration gets trapped beneath the skin, causing inflammation and rash. Heat rash is usually self-limited, meaning it resolves on its own without treatment. Over-the-counter treatments such as calamine, hydrocortisone cream, itch preparations (such as Benadryl spray), or sunburn lotions can be used as skincare to treat the itching and burning symptoms. Heat rash usually goes away on its own within three or four days so long as you don't irritate the site further. Heat rash happens when the sweat glands get blocked. The trapped sweat irritates the skin and leads to small bumps.
Answer:
The time taken by missile's clock is 
Solution:
As per the question:
Speed of the missile, 
Now,
If 'T' be the time of the frame at rest then the dilated time as per the question is given as:
T' = T + 1
Now, using the time dilation eqn:




(1)
Using binomial theorem in the above eqn:
We know that:

Thus eqn (1) becomes:


Now, putting appropriate values in the above eqn:

