as it is given that it covers a total distance 1 * 10^2 m
total time taken by it = 13.6 s
now the average speed is given as ratio of total distance and total time



so the average speed will be 7.35 m/s
now if it starts from rest and achieve the final speed as 7.35 m/s
now we can use kinematics



so its acceleration will be 3.68 m/s^2
Answer:
a) v(2) = 2m/s, v(3) = -2m/s
b) speed at t = 2s is 2m/s
speed at t = 3s is 2m/s
c) 0 m/s
Explanation:
We can take the derivative of x(t) to find the equation of velocity
v(t) = x'(t) = 10 - 4t
(a) v(2) = 10 - 4*2 = 10 - 8 = 2 m/s
v(3) = 10 - 4*3 = 10 - 12 = -2 m/s
(b) The speed would be the same as velocity without the direction
speed at t = 2s is 2m/s
speed at t = 3s is 2m/s
(c) The average velocity between t = 2s and t = 3s is distance it travels over period of time


The smallest time interval in which the magnetic field can be turned on or off to induced the emf is 47.5 s.
<h3>
Emf induced in the coil</h3>
The emf induced in the coil is calculated as follows;
emf = dФ/dt
where;
- dФ is change in flux
- dt is change in time
0.12 = 5.7/dt
dt = 5.7/0.12
dt = 47.5 s
Thus, the smallest time interval in which the magnetic field can be turned on or off to induced the emf is 47.5 s.
Learn more about emf here: brainly.com/question/13744192
#SPJ11
Answer: 4.45m/s
Explanation:
I assume we're solving for her speed.
400m x 4 laps = 1600m
1600m / 6 minutes = 266.67m/min
(266.67m/min) x (1 minute/60 seconds) = 4.45m/s
266.67/60 = 4.45m/s
Answer: heat to mechanical to electrical
Explanation: