Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves

Where,
= mass per unit length
T = tension
Put the value into the formula


Hence, The speed of transverse waves in this string is 519.61 m/s.
Answer:
The range of powers is 
Explanation:
From the question we are told that
The far point of the left eye is 
The near point of the left eye is 
The near point with the glasses on is 
From these parameter we can see that with the glass on that for near point the
Object distance would be 
Image distance would be 
To obtain the focal length we would apply the lens formula which is mathematically represented as

substituting values


converting to meters


Generally the power of the lens is mathematically represented as

Substituting values


From these parameter we can see that with the glass on that for far point the
Object distance would be 
Image distance would be 
To obtain the focal length of the lens we would apply the lens formula which is mathematically represented as

substituting values


converting to meters

Generally the power of the lens is mathematically represented as

Substituting values


This implies that the range of powers of the lens in his glass is
