Answer:
4.99 mg of vitamin C are in the beaker.
Explanation:
Given that,
Weight of vitamin = 0.0499 g
Molar mass = 176.124 g/mol
Weight of water = 100.0 ml
We need to calculate the mg of vitamin C in the beaker
We dissolve 0.0499 g vitamin C in water to from 100.0 ml solution.
100 ml solution contain 49.9 mg vitamin C
Now, we take 10 ml of this vitamin C solution in breaker
Since, 100 ml solution =49.9 mg vitamin C
Therefore,


Hence, 4.99 mg of vitamin C are in the beaker.
Answer:

Explanation:
Given,
Width of slit, W = 5.7 x 10⁻⁴ m
Distance between central bright fringe, L = 4 m
distance between central bright fringe and first dark fringe, y = 4 mm
Diffraction angle



Now.

m = 1



The vectors adition we can find the magnitude of the force applied by the other astronaut is 11.25 N in the y direction
Parameters given
- Force of an astronaut Fₓ = 42 N
To find
The force is a vector magnitude for which the addition of vectors must be used, a very efficient method to perform this sum is to add the components of each vector and devise constructing the resulting vector using trigonometry and the Pythagorean theorem.
Let's use trigonometry to find the other force
tan θ =
F_ y = Fₓ tan θ
let's calculate
F_y = 42 tan 15
F_y = 11.25 N
Using the summation of vectors we can find the magnitude of the force applied by the other astronaut is 11.25 N in the y direction
Learn more about vector addition here:
brainly.com/question/15074838
Answer:
The induced emf is
Explanation:
From the question we are told that
The radius of the circular loop is 
The intensity of the wave is 
The wavelength is 
Generally the intensity is mathematically represented as

Here
is the permeability of free space with value

B is the magnetic field which can be mathematically represented from the equation as

substituting values


The area is mathematically represented as

substituting values


The angular velocity is mathematically represented as

substituting values
Generally the induced emf is mathematically represented as

At maximum induced emf 
So

substituting values
Force = Mass * Acceleration therefore the red ball with the higher mass will have more force and greater acceleration