If resistor A, B and C are arranged in series, same current will flow in all the resistors and 2A will flow is resistor C.
<h3>What is series circuit?</h3>
This is the type of circuit arrangement in which the resistors are arranged in series order.
In this type of circuit arrangement, same current flows in every component of the circuit.
Thus, if resistor A, B and C are arranged in series, same current will flow in all the resistors and 2A will flow is resistor C.
Learn more about series circuit here: brainly.com/question/19865219
#SPJ1
Answer:
Speed of block after the bullet emerges = 1.5 m/s
Explanation:
Here momentum is conserved.
Initial momentum = Final momentum.
Mass of bullet = 10 g = 0.01 kg
Initial Velocity of bullet = 300 m/s
Mass of block = 1 kg
Initial Velocity of block = 0 m/s
Final Velocity of bullet = 50% of initial velocity. = 150 m/s
We need to find final velocity of block. Let it be v
We have
Initial momentum = 0.01 x 300 + 1 x 0 = 3 kg m/s
Final momentum = 0.01 x 150 + 1 x v = 1.5 + v
Equating
3 = 1.5 + v
v = 1.5 m/s
Speed of block after the bullet emerges = 1.5 m/s
Explanation:
In first case, the forces on LHS and on RHS is the same i.e. 3 N. The force acting on the car is balanced force. As a result, the car will not move at all.
In second case,
Force on RHS = 2000 N
Force on LHS = -6000 N
Net force acting on it is given by :
F = 2000+(-6000)
= -4000 N
Hence, this is the required solution.
If you compare the energy at two different times in an equation, you'll see no difference, because it's been conserved. The total energy of a system is the sum of its energy in motion - its kinetic energy - and its energy due to its position, which is its potential energy
Answer:
<em>The glider's new speed is 68.90 m/s</em>
Explanation:
<u>Principle Of Conservation Of Mechanical Energy</u>
The mechanical energy of a system is the sum of its kinetic and potential energy. When the only potential energy considered in the system is related to the height of an object, then it's called the gravitational potential energy. The kinetic energy of an object of mass m and speed v is

The gravitational potential energy when it's at a height h from the zero reference is

The total mechanical energy is


The principle of conservation of mechanical energy states the total energy is constant while no external force is applied to the system. One example of a non-conservative system happens when friction is considered since part of the energy is lost in its thermal manifestation.
The initial conditions of the problem state that our glider is glides at 416 meters with a speed of 45.2 m/s. The initial mechanical energy is

Operating in terms of m


Then we know the glider dives to 278 meters and we need to know their final speed, let's call it
. The final mechanical energy is

Operating and factoring

Both mechanical energies must be the same, so

Simplifying by m and rearranging

Computing

The glider's new speed is 68.90 m/s