"Voltage" is the "pressure" that makes electrons want to leave where they are
and head in some direction, if there's conducting material in that direction.
"Current" is the rate at which they all migrate in that direction.
Given:
Gasoline pumping rate, R = 5.64 x 10⁻² kg/s
Density of gasoline, D = 735 kg/m³
Radius of fuel line, r = 3.43 x 10⁻³ m
Calculate the cross sectional area of the fuel line.
A = πr² = π(3.43 x 10⁻³ m)² = 3.6961 x 10⁻⁵ m²
Let v = speed of pumping the gasoline, m/s
Then the mass flow rate is
M = AvD = (3.6961 x 10⁻⁵ m²)*(v m/s)*(735 kg/m³) = 0.027166v kg/s
The gasoline pumping rate is given as 5.64 x 10⁻² kg/s, therefore
0.027166v = 0.0564
v = 2.076 m/s
Answer: 2.076 m/s
The gasoline moves through the fuel line at 2.076 m/s.
To solve this problem we will apply the concepts related to the Doppler effect. According to this concept, it is understood as the increase or decrease of the frequency of a sound wave when the source that produces it and the person who captures it move away from each other or approach each other. Mathematically this can be described as
Here,
= Original frequency
= Velocity of the observer
= Velocity of the speed
Our values are,
Using the previous equation,
Rearrange to find the velocity of the observer
Replacing we have that
Therefore the velocity of the observer is 16.2m/s
Vertical columns on the periodic table are called groups.
I hope you like this answer, please Brainliest me, and have a good day and life! :D<span />