Answer:
are you asking how the planets are arranged
Answer:
the frequency is the fundamental and distance is L = ¼ λ
Explanation:
This problem is a phenomenon of resonance between the frequency of the tuning fork and the tube with one end open and the other end closed, in this case at the closed end you have a node and the open end a belly, so the wavelength is the basis is
λ = 4 L
In this case L = 19.4 cm = 0.194 m
let's use the relationship between wave speed and wavelength frequency and
v = λ f
where the frequency is f = 440 Hz
v = 4 L f
let's calculate
v = 4 0.194 440
v = 341.44 m / s
so the frequency is the fundamental and distance is
L = ¼ λ
Answer:
A big wheel with triple the circumference of a small wheel will rotate with triple the force.
Explanation:
- when this circumference is tripled, it means triple the force (they are directly correlated)
The resistance needed to be added is R
The Current is 2 ma
The voltage reading is a maximum of 50 volts.
The ma meter has an internal resistance of 40 ohms.
Formula
E = I * R
Givens
E = 50
I = 2 ms
R = R + 40
Solution
E = I * R
I = 2 ma [ 1 amp / 1000 ma] = 0.002 amp
50 = 0.002 * (R + 40) Divide by 0.002
50/0.002 = R + 40
25000 = R + 40 Subtract 40 from both sides.
R = 25000 - 40
R = 24960 Answer
From Literature:
The amount of energy in the photons is given by this equation:
E = hf
where E = energy
h = Planck's constant = 6.63 * 10^-34 Joule seconds
f = frequency of the light, Hz
Given:
E= 3.00 eV and Planck's constant
To solve for the frequency, E = 3.00 eV
1 electronvolt = 1.60218 x 10^-19 Joules
3 * 1.60218 x 10^-19 Joules = 6.63 * 10^-34 Joule seconds * f
f = 7.25 x 10^14 /second or hertz
Therefore, the threshold frequency of the material is 7.25 x 10^14 Hertz.