Answer:
Acceleration = 2.35 m/
Speed = 8.67 m/s
Explanation:
The coefficient of friction , u =0.3
The angle of incline = 30°
The two forces acting on block are weight and friction.
weight along the incline = mg cos60° =
= 0.5 mg
Friction along incline = umg cos30° = mg 
Friction along incline = 0.26 mg
Net force acting on the weight = (0.5 - 0.26) mg = 0.24 mg
Acceleration =
= 0.24 g = 2.35 m/
The height of incline = 8 m
Length of the inclined edge = 16 m


v= 8.67 m/s
The kinetic energy gained by the air molecules is 0.0437 J
<h3 />
Given:
Mass of a coffee filter, m = 1.5 g
Height from which it is dropped, h = 3 m
Speed at ground, v = 0.7 m/s
Initially, the coffee filter has potential energy. It is given by :

P = 1.5 × 10⁻³ kg × 9.8 m/s² × 3m
P = 0.0441 J
Finally, it will have kinetic energy. It is given by :

×
× 10⁻³ × (0.7)²
E = 0.000343 J
The kinetic energy Kair did the air molecules gain from the falling coffee filter is :
E = 0.000343 - 0.0441
= 0.0437 J
So, the kinetic energy Kair did the air molecules gain from the falling coffee filter is 0.0437 J
Learn more about kinetic energy here:
brainly.com/question/8101588
#SPJ4
Answer:
An asteroid impact could affect the tilt of the Earth due to the force it applies onto the planet. This would change Earth's seasons due to the fact that Earth's tilt causes seasons.
Answer:
<em>113.4 J</em>
Explanation:
<u>Elastic Potential Energy</u>
Is the energy stored in an elastic material like a spring of constant k, in which case the energy is proportional to the square of the change of length Δx and the constant k.

The spring has a natural length of 0.7 m and a spring constant of k=70 N/m. When the spring is stretched to a length of 2.5 m, the change of length is
Δx = 2.5 m - 0.7 m = 1.8 m
The energy stored in the spring is:

PE = 113.4 J