Answer:
Initial concentration of the reactant = 3.34 × 10^(-2)M
Explanation:
Rate of reaction = 2.30×10−4 M/s,
Time of reaction = 80s
Final concentration = 1.50×10−2 M
Initial concentration = Rate of reaction × Time of reaction + Final concentration
= 2.30×10−4 M/s × 80s + 1.50×10−2 M = 3.34 × 10^(-2)M
Initial concentration = 3.34 × 10^(-2)M
I would think 10 but I would have to see the picture
Answer:
a ) 24 m/s
Explanation:
Given,
Frequency ( f ) = 6 Hz
Wavelength ( λ ) = 4 m
To find : Speed ( v ) = ?
Formula : -
v = f x λ
v
= 4 x 6
= 24 m/s
Therefore, the speed of a wave that has a frequency of 6 Hz and a wavelength of 4 m
is 24 m/s.
The force of attraction between 2 charged spheres can be explained by Coulomb's law,
It states the force of attraction is directly proportional to the magnitudes of the charges and inversely proportional to the square of the distance between the charges.
/

where F - force of attraction/repulsion
q₁ and q₂ - charges of the 2 spheres
k - Coulomb's law constant
r - distance between the spheres
In the question given, the charges of the spheres remain constant in both instances, only distance changes. Therefore (kq₁q₂) = c which is a constant
then F = c / r²
first instance
6 x 10⁻⁹ N = c/ (20 cm)² ---1)
F = c/(10 cm)² --- 2)
2) / 1)

F = 6 x 10⁻⁹ x 4
F = 2.4 x 10⁻⁸ N
Explanation:
1) For a positive point charge, the lines radiate outwards
for a negative point charge, the lines converge inwards
2) F = 2.3 X 10^-26 N
k = 9 X 10^9 N.m²/C
q1 = q2 = e = 1.6 X 10^-19 C
r = ?
F = kq1q2/r²
r² = kq1q2/F
r = √[kq1q2/F ]
r = √0.0100
r = 0.10m
The two protons are 0.10 m apart
3) The unit if electric field intensity is Newton-per-coulomb N/C