Im sorry may you please retake the picture then i will answer
Answer:
6.32m/s
Explanation:
note:Now these calculations are based in the fact that acc. due to gravity is 10m/s²
okay so I'm thinking you think the speed of a body depends on the mass of the body also,umh... well it doesn't at all!
when two bodies of different masses fall from the same height,they fall at the same time( this is just to say)
now enough of the talking let solve....
so the ball was dropped .ie from rest to the ground through a distance of 2m,
the formula for calculating the distance if a body moving in a straight line is given by:
S=ut + ½at² where u is initial velocity, a is acceleration ( of the body or due to gravity, but since its falling freely under the influence of gravity its " we use the acceleration due to gravity ,which is 10m/s²) and t is the time taken to cover the distance.
from our question the ball was dropped from rest thus its u is 0 therefore we use this equation to find the time it took to touch ground (S=½at²)
solving ....
we get t to be 0.632s
to find the speed we substitute t in the equation below:
V=u+at ,but since u=0
V=at =10•0.632=6.32m/s
therefore the speed the body uses to strike the ground is 6.32m/s
Answer:
B. As the temperature increases, the kinetic energy of the molecules increases.
Explanation:
When the temperature of an object increases, the kinetic energy of its particles increases, so the thermal energy of an object increases as its temperature increases.
Answer:
1.28
Explanation:
If you want to find the m/s you would divide distance by time, so
45 divided by 35 would equal 1.28571429 and so on.
you can just write the three first numbers.
More force is needed for more mass. Therefore, if the mass is greater and the force is not enough then the object will less likely accelerate