1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mandarinka [93]
2 years ago
8

A new conveyor system at the local packaging plant will utilize a motor powered mechanical arm to exertion average force of 890N

to push large crates a distance of 12 meters in 22 seconds. Determine the power output required of such a motor.
Physics
1 answer:
valkas [14]2 years ago
4 0

Answer:

power =( 890 N x 12 m ) / 22 s=

=   485 Watts

Explanation:

You might be interested in
A camera lens with focal length f = 50 mm and maximum aperture f>2
Brut [27]

Answer:

The minimum distance between two points on the  object that are barely resolved is 0.26 mm

The corresponding distance between the  image points = 0.0015 m

Explanation:

Given  

focal length f = 50 mm and maximum aperture f>2

s =  9.0 m

aperture = 25 mm = 25 *10^-3 m

Sin a = 1.22 *wavelength /D  

Substituting the given values, we get –  

Sin a = 1.22 *600 *10^-9 m /25 *10^-3 m

Sin a = 2.93 * 10 ^-5 rad

Now  

Y/9.0 m = 2.93 * 10 ^-5

Y = 2.64 *10^-4 m = 0.26 mm

Y’/50 *10^-3 = 2.93 * 10 ^-5  

Y’ = 0.0015 m

8 0
3 years ago
A 0.89 m aqueous solution of an ionic compound with the formula mx has a freezing point of -3.0 ∘c . van't hoff factor?
BigorU [14]

Answer is: V<span>an't Hoff factor (i) for this solution is 1,81.
Change in freezing point from pure solvent to solution: ΔT =i · Kf · b.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
b -  molality, moles of solute per kilogram of solvent.
</span><span>b = 0,89 m.
ΔT = 3°C = 3 K.
i = </span>3°C ÷ (1,86 °C/m · 0,89 m).

i = 1,81.

5 0
3 years ago
Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth's center. Satellite A is to o
Pachacha [2.7K]

(a) 0.448

The gravitational potential energy of a satellite in orbit is given by:

U=-\frac{GMm}{r}

where

G is the gravitational constant

M is the Earth's mass

m is the satellite's mass

r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):

r = R + h

We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

\frac{U_B}{U_A}=\frac{-\frac{GMm}{R+h_B}}{-\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

and so, substituting:

R=6370 km\\h_A = 5970 km\\h_B = 21200 km

We find

\frac{U_B}{U_A}=\frac{6370 km+5970 km}{6370 km+21200 km}=0.448

(b) 0.448

The kinetic energy of a satellite in orbit around the Earth is given by

K=\frac{1}{2}\frac{GMm}{r}

So, the ratio between the two kinetic energies is

\frac{K_B}{K_A}=\frac{\frac{1}{2}\frac{GMm}{R+h_B}}{\frac{1}{2}\frac{GMm}{R+h_A}}=\frac{R+h_A}{R+h_B}

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.

(c) B

The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

E=U+K=-\frac{GMm}{R+h}+\frac{1}{2}\frac{GMm}{R+h}=-\frac{1}{2}\frac{GMm}{R+h}

For satellite A, we have

E_A=-\frac{1}{2}\frac{GMm}{R+h_A}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+5.97\cdot 10^6 m}=-4.65\cdot 10^8 J

For satellite B, we have

E_B=-\frac{1}{2}\frac{GMm}{R+h_B}=-\frac{1}{2}\frac{(6.67\cdot 10^{-11})(5.98\cdot 10^{24}kg)(28.8 kg)}{6.37\cdot 10^6 m+21.2\cdot 10^6 m}=-2.08\cdot 10^8 J

So, satellite B has the greater total energy (since the energy is negative).

(d) -2.57\cdot 10^8 J

The difference between the energy of the two satellites is:

E_B-E_A=-2.08\cdot 10^8 J-(-4.65\cdot 10^8 J)=-2.57\cdot 10^8 J

4 0
3 years ago
Unscramble the bolded letters to guess the 6 letter word code. Did you get the poses or exercises correct? MOUNTAIN POSE TRIANGL
nikitadnepr [17]

Explanation:

I don't see a question...

8 0
2 years ago
Calculate the molecular weight of Aluminium hydroxide​
Vedmedyk [2.9K]

Al(OH)3 = 26.98 + [(16×3) + (1.01×3)] = 26.98 + 51.03 = 78.01 and the unit will be g/mol

<h3><em>Al(OH)3 = 78.01 g/mol</em></h3>
5 0
3 years ago
Other questions:
  • Which of the following statements accurately describes the sign of the work done on the box by the force of the push?
    9·1 answer
  • PLEASE HELP ASAP!! FILL IN THE BLANKS. 99 POINTS!The force of _________ is what holds you down to earth. The ______________ of o
    15·2 answers
  • The landing of a spacecraft is cushioned with the help of airbags. During its landing on Mars, the velocity of downward fall is
    8·2 answers
  • A systematic error in data is called
    9·1 answer
  • Why are so many large optical telescopes located on mountaintops
    15·2 answers
  • If a permanent magnet picks up a steel paper clip, the paper clip also
    7·2 answers
  • Which of the following statements is true regarding the constructive interference diagram shown below? Select all that apply.
    10·2 answers
  • Question 8
    15·1 answer
  • Make a 29 day timeline. Along the timeline draw and label the phases of the Moon starting with a full moon, crescent, first quar
    15·1 answer
  • Thế nào là gương cầu lồi
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!