Answer:
The minimum distance between two points on the object that are barely resolved is 0.26 mm
The corresponding distance between the image points = 0.0015 m
Explanation:
Given
focal length f = 50 mm and maximum aperture f>2
s = 9.0 m
aperture = 25 mm = 25 *10^-3 m
Sin a = 1.22 *wavelength /D
Substituting the given values, we get –
Sin a = 1.22 *600 *10^-9 m /25 *10^-3 m
Sin a = 2.93 * 10 ^-5 rad
Now
Y/9.0 m = 2.93 * 10 ^-5
Y = 2.64 *10^-4 m = 0.26 mm
Y’/50 *10^-3 = 2.93 * 10 ^-5
Y’ = 0.0015 m
Answer
is: V<span>an't
Hoff factor (i) for this solution is 1,81.
Change in freezing point from pure solvent to
solution: ΔT =i · Kf · b.
Kf - molal freezing-point depression constant for water is 1,86°C/m.
b - molality, moles of solute per
kilogram of solvent.
</span><span>b = 0,89 m.
ΔT = 3°C = 3 K.
i = </span>3°C ÷ (1,86 °C/m · 0,89 m).
i = 1,81.
(a) 0.448
The gravitational potential energy of a satellite in orbit is given by:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):
r = R + h
We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

and so, substituting:

We find

(b) 0.448
The kinetic energy of a satellite in orbit around the Earth is given by

So, the ratio between the two kinetic energies is

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.
(c) B
The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

For satellite A, we have

For satellite B, we have

So, satellite B has the greater total energy (since the energy is negative).
(d) 
The difference between the energy of the two satellites is:

Al(OH)3 = 26.98 + [(16×3) + (1.01×3)] = 26.98 + 51.03 = 78.01 and the unit will be g/mol
<h3>
<em>Al(OH)3 = 78.01 g/mol</em></h3>