Answer:
a) P =392.4[Pa]; b) F = 706.32[N]
Explanation:
With the input data of the problem we can calculate the area of the tank base
L = length = 10[m]
W = width = 18[cm] = 0.18[m]
A = W * L = 0.18*10
A = 1.8[m^2]
a)
Pressure can be calculated by knowing the density of the water and the height of the water column within the tank which is equal to h:
P = density * g *h
where:
density = 1000[kg/m^3]
g = gravity = 9.81[m/s^2]
h = heigth = 4[cm] = 0.04[m]
P = 1000*9.81*0.04
P = 392.4[Pa]
The force can be easily calculated knowing the relationship between pressure and force:
P = F/A
F = P*A
F = 392.4*1.8
F = 706.32[N]
Explanation:
Let f is the frequency of an oscillation and T is the period of the oscillation. There exists an inverse relationship between the frequency and the time period of the oscillation. Mathematically, it is given by :

Also, 
So,

The time taken to complete one oscillation is called the period of the oscillation and the number of oscillation is called the frequency if an oscillation.
Zero maximum force (N) or field strength (N/C). ... minimum /maximum field strength.
The correct answer should be a
Answer:
-3 m
Explanation:
Displacement is the final position minus the initial position.
Δx = x − x₀
Δx = -3 m − 0 m
Δx = -3 m