Answer:
The magnitude of the electric field at a point equidistant from the lines is 
Explanation:
Given that,
Positive charge = 24.00 μC/m
Distance = 4.10 m
We need to calculate the angle
Using formula of angle



We need to calculate the magnitude of the electric field at a point equidistant from the lines
Using formula of electric field

Put the value into the formula



Hence, The magnitude of the electric field at a point equidistant from the lines is 
Answer:
The answer is B
Explanation:
5/2=2.5
2.5x2=5
Hope this helps ik its kinda confusing lol
Answer:
s = 1.7 m
Explanation:
from the question we are given the following:
Mass of package (m) = 5 kg
mass of the asteriod (M) = 7.6 x 10^{20} kg
radius = 8 x 10^5 m
velocity of package (v) = 170 m/s
spring constant (k) = 2.8 N/m
compression (s) = ?
Assuming that no non conservative force is acting on the system here, the initial and final energies of the system will be the same. Therefore
• Ei = Ef
• Ei = energy in the spring + gravitational potential energy of the system
• Ei = \frac{1}{2}ks^{2} + \frac{GMm}{r}
• Ef = kinetic energy of the object
• Ef = \frac{1}{2}mv^{2}
• \frac{1}{2}ks^{2} + (-\frac{GMm}{r}) = \frac{1}{2}mv^{2}
• s =
s =
s = 1.7 m
Responder:
13,01 m / s
Explicación:
Paso uno:
datos dados
masa de la persona 1 m = 80 kg
velocidad de la persona 1 v = 9 m / s
masa de la persona 2 M = 55kg
velocidad de la persona 2 v =?
Segundo paso:
la expresión del impulso se da como
P = mv
para la primera persona, el impulso es
P = 80 * 9
P = 720N
Paso tres:
queremos que la segunda persona tenga el mismo impulso que la primera, por lo que la velocidad debe ser
720 = 55v
v = 720/55
v = 13,09
v = 13,01 m / s
Por lo tanto, la magnitud de la velocidad debe ser 13.01 m / s.
Answer:
<h2>121ohms</h2>
Explanation:
Formula used for calculating power P = current * voltage
P = IV
From ohms law, V = IR where R is the resistance. Substituting V = IR into the formula for calculating power, we will have;
P = IV
P =(V/R)V
P = V²/R
Given parameters
Power rating of the bulb P = 100 Watts
Source voltage V = 110V
Required
Resistance of the bulb R
Substituting the given parameters into the formula for calculating power to get Resistance R;
P = V²/R
100 = 110²/R
R = 110²/100
R = 110 * 110/100
R = 12100/100
R = 121 ohms
<em>Hence, the resistance of this bulb is 121 ohms</em>