1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mezya [45]
4 years ago
8

Krista is playing tennis at the park. When the tennis ball flies toward her, Krista hits the ball with her racket, which causes

the ball to fly in the opposite direction. According to Newton's third law of motion, which of the following is true?A. When the racket hits the tennis ball with a force, the ball does not apply any reaction force to the racket.
B. When the racket hits the tennis ball with a force, the tennis ball applies an equal but opposite force to the racket.
C. When the racket hits the tennis ball with a force, the ball applies a much weaker force in the opposite direction of the racket's force.
D. When the racket hits the tennis ball with a force, the ball applies an equal force in the same direction as the racket's force.
Physics
1 answer:
xenn [34]4 years ago
7 0

Answer:

B. When the racket hits the tennis ball with a force, the tennis ball applies an equal but opposite force to the racket.

Explanation:

According to the Newton's third law of motion every action has equal and opposite reaction. So, when the force is applied by the racket on the ball then the ball also applies an equal intensity of force in the opposite direction on the racket. It is just that the the force on the racket is absorbed by the player holding it.

You might be interested in
Three positive charges A, B, and C, and a negative charge D are placed in a line as shown in the diagram. All four charges are o
polet [3.4K]

Answer:

a. charge C experiences the greatest net force, and charge B receives the smallest net force

b. ratio=9

Explanation:

<u>Electrostatic Force</u>

Two point-charges q_1 and q_2 separated a distance d will exert a force on each other of a magnitude given by the Coulomb's formula

\displaystyle F=\frac{k\ q_1\ q_2}{r^2}

Where k is the proportional constant of value

k=9*10^9\ N.m^2/c^2

The diagram provided in the question shows four identical charges (let's assume their value is Q) separated by identical distance (of value d). The force between the charges next to others is

\displaystyle F_1=\frac{k\ Q\ Q}{d^2}

\displaystyle F_1=\frac{k\ Q^2}{d^2}

The force between charges separated 2d is

\displaystyle F_2=\frac{k\ Q^2}{(2d)^2}

\displaystyle F_2=\frac{k\ Q^2}{4d^2}

And the force between the charges A and D is

\displaystyle F_3=\frac{k\ Q^2}{(3d)^2}

\displaystyle F_3=\frac{k\ Q^2}{9d^2}

Now, let's analyze each charge and the force applied to them by the others

Let's recall equally signed charges repel each other and differently signed charges attrach each other

Charge A. It receives force to the left from B and C and to the right from D

\displaystyle F_A=-F_1-F_2+F_3=-\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{9d^2}

\displaystyle F_A=\frac{k\ Q^2}{d^2}(-1-\frac{1}{4}+\frac{1}{9})

\displaystyle F_A=-\frac{41}{36}F_1

Charge B. It receives force to the right from A and D and to the left from C

\displaystyle F_B=F_1-F_1+F_2=\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{4d^2}

\displaystyle F_B=\frac{1}{4}F_1

Charge C. It receives forces to the right from all charges.

\displaystyle F_C=F_2+F_1+F_1=\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{d^2}

\displaystyle F_C=\frac{9}{4}F_1

Charge D. It receives forces to the left from all charges

\displaystyle F_D=-F_3-F_2-F_1=-\frac{k\ Q^2}{9d^2}-\frac{k\ Q^2}{4d^2}-\frac{k\ Q^2}{d^2}

\displaystyle F_D=-\frac{49}{36}F_1

Comparing the magnitudes of each force is just a matter of computing the fractions

\displaystyle \frac{41}{36}=1.13,\ \frac{1}{4}=0.25,\ \frac{9}{4}=2.25,\ \frac{49}{36}=1.36

a.

We can see the charge C experiences the greatest net force, and charge B receives the smallest net force

b.

The ratio of the greatest to the smallest net force is

\displaystyle \frac{\frac{9}{4}}{\frac{1}{4}}=9

The greatest force is 9 times the smallest net force

7 0
3 years ago
I need help it is due today
siniylev [52]

Answer:

Option 3. The tennis ball began from rest and rolls at a rate of 14.7 m/s safer 1.5 seconds.

Explanation:

To know the the correct answer to the question, it is important that we know the definition of acceleration.

Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:

a = (v – u) /t

Where

a => acceleration

v => final velocity

u => Initial velocity

t => time

With the above information in mind, let us consider the options given in the question above to know which conform to the difinition of acceleration.

For Option 1,

We were told that the tennis ball has the following:

Distance = 4 m

Time = 1.5 s

This talks about the speed and not the acceleration.

Speed = distance / time

For Option 2,

We were only told about the average speed and nothing else.

For Option 3,

We were told that the tennis ball have the following:

Initial velocity (u) = 0 m/s

Final velocity (v) = 14.7 m/s

Time = 1.5 s

This talks about the acceleration.

a = (v – u) /t

For Option 4,

We were only told that the tennis rolls to the right at an average speed. This talks about the average velocity. We need more information like time to justify the acceleration.

From the above illustrations, option 3 gives the correct answer to the question.

8 0
3 years ago
What are at least 3 examples of sublimation?
Step2247 [10]

Answer:

dry ice, air fresheners, polar evaporation, arsenic treatment

5 0
3 years ago
Read 2 more answers
The voltage across the terminals of a generator is 5.7 v when it supplies a current of 0.3 A. It becomes 5.1 V when I=0.9A. Find
snow_tiger [21]

Answer:

  • The emf of the generator is 6V
  • The internal resistance of the generator is 1 Ω

Explanation:

Given;

terminal voltage, V = 5.7 V, when the current, I = 0.3 A

terminal voltage, V = 5.1 V, when the current, I = 0.9 A

The emf of the generator is calculated as;

E = V + Ir

where;

E is the emf of the generator

r is the internal resistance

First case:

E = 5.7   + 0.3r -------- (1)

Second case:

E = 5.1 + 0.9r -------- (2)

Since the emf E, is constant in both equations, we will have the following;

5.1 + 0.9r = 5.7   + 0.3r  

collect similar terms together;

0.9r - 0.3r = 5.7 - 5.1

0.6r = 0.6

r = 0.6/0.6

r = 1 Ω

Now, determine the emf of the generator;

E = V + Ir

E = 5.1 + 0.9x1

E = 5.1 + 0.9

E = 6 V

6 0
3 years ago
If two planets orbit a star, but planet B is twice as far from the star as planet A, planet A will receive ____ times the flux t
Tresset [83]

Answer:

The nearest plant (A) receives 4 times more radiation from the farthest plant

Explanation:

The energy emitted by the star is distributed on the surface of a sphere, whereby intensity received is the power emitted between the area of ​​the sphere

                I = P / A

               P = I A

The area of ​​the sphere is

               A = 4π r²

Since the amount of radiation emitted by the star is constant, we can write this expression for the position of the two planets

               P = I₁ A₁ = I₂ A₂

               I₁ / I₂ = A₂ / A₁

 Suppose index 1 corresponds to the nearest planet,

            r2 = 2 r₁

            I₁ / I₂ = r₁² / r₂²

            I₁ / I₂ = r₁² / (2r₁)²

            I₁ / I₂ = ¼

           4 I₁ = I₂

The nearest plant (A) receives 4 times more radiation from the farthest plant

7 0
4 years ago
Other questions:
  • on a very muddy football field, a 120 kg linebacker tackles an 75 kg halfback. immediately before the collision, the linebacker
    11·1 answer
  • In Figure 10-1, if the force exerted on a 3.0-kg backpack that is initally at rest is 20.0 N and the distance it acts over is 0.
    9·1 answer
  • How high is the rocket when the canister hits the launch pad, assuming that the rocket does not change its acceleration?
    15·1 answer
  • Which would fall with greater acceleration in a vacuum a leaf or a stone?
    6·2 answers
  • What is the importance of law of conservation of mass
    12·1 answer
  • A person who weighs 150 pounds on Earth would weigh ____ pounds on the moon.
    10·1 answer
  • Can someone please solve this
    11·1 answer
  • Two risks of exposure to High levels of UV radiation
    10·2 answers
  • 13. Determine the kinetic energy of a 2000g roller coaster car that is moving with a speed of 2m/s.
    5·1 answer
  • How many 60-watt lamps could be connected in parallel on a 15-amp, 120-volt circuit without exceeding 80% of the rating of the c
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!