1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tcecarenko [31]
2 years ago
11

Rolled cookies are cut into fancy shapes. True False

Physics
2 answers:
Paha777 [63]2 years ago
5 0

Answer:

false

Explanation:

the answer is false

Gennadij [26K]2 years ago
4 0

Answer:

true

Explanation:

cause why not, try new things init

You might be interested in
The voltage across a membrane forming a cell wall is 72.7 mV and the membrane is 9.22 nm thick. What is the magnitude of the ele
Blizzard [7]

Answer:

The  magnitude of the  electric field intensity is  E =  7.89  *10^{6} \ V/m

Explanation:

From the question we are told that

    The  voltage is  \epsilon     =  72.7 \ mV  =  72.7 *10^{-3}  V

    The  thickness of the membrane is  t =  9.22 \ nm  =  9.22 *10^{-9} \ m

     

Generally the electric field intensity is mathematically represented as

                E =  \frac{\epsilon }{t}

 substituting values

                E =  \frac{72.7 *10^{-3} }{9.22 *10^{-9}}

                E =  7.89  *10^{6} \ V/m

8 0
3 years ago
The waves shown below represent sound waves. Which of the waves would have the highest-pitched sound?
Ostrovityanka [42]
Humans hear frequencies from 20 Hz<span> (low) up to </span>20,000 Hz (high)

8 0
2 years ago
A ball with 100 J of PE is released from a height of 10 m. What will be the KE of the ball at 5
harkovskaia [24]

Answer:

The kinetic energy is: 50[J]

Explanation:

The ball is having a potential energy of 100 [J], therefore

PE = [J]

The elevation is 10 [m], and at this point the ball is having only potential energy, the kinetic energy is zero.

E_{p} =m*g*h\\where:\\g= gravity[m/s^{2} ]\\m = mass [kg]\\m= \frac{E_{p} }{g*h}\\ m= \frac{100}{9.81*10}\\\\m= 1.01[kg]\\\\

In the moment when the ball starts to fall, it will lose potential energy and the potential energy will be transforme in kinetic energy.

When the elevation is 5 [m], we have a potential energy of

P_{e} =m*g*h\\P_{e} =1.01*9.81*5\\\\P_{e} = 50 [J]\\

This energy is equal to the kinetic energy, therefore

Ke= 50 [J]

8 0
3 years ago
A 4.33 kg cat has 41.7 J of KE How fast is the cat moving?
balandron [24]

Answer:

The answer to your question is:

Explanation:

Data

mass = 4.33 kg

E = 41.7 J

v = ?

Formula

Ke = (1/2)mv²

Clear v from the equation

v = √2ke/m

Substitution

v = √2(41.7)/4.33

v = 19.26 m/s          Result

7 0
3 years ago
A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the
olga2289 [7]

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

3 0
3 years ago
Other questions:
  • Using information about natural laws, explain why some car crashes produce minor injuries and others produce catastrophic injuri
    15·1 answer
  • A example of a substance that has low pH is
    13·1 answer
  • Directions: WRITE a summary of the Newton’s Laws of Motion reading.
    11·1 answer
  • Light of wavelength 610 nm falls on a slit that is 3.50×10^−3 mm wide. How far the first bright diffraction fringe is from the s
    11·1 answer
  • A student submerges an irregularly object in a graduated cylinder half filled with water. The level of the water in the cylinder
    15·1 answer
  • Electric current passing through a human body can be dangerous, even fatal, depending on the amount of current, the duration of
    9·1 answer
  • A converging lens focuses a set of light rays entering the lens on one side parallel to its axis to a single focal point on the
    10·1 answer
  • Assuming that the density of air is 1.3 g/l, how many grams of carbon monoxide are in 1.0 l of air at the maximum allowable conc
    6·1 answer
  • You are designing a solenoid to produce a 2.0-kG magnetic field. You wish to wrap your insulated wire uniformly around a cardboa
    11·1 answer
  • A box weighing 2.4 x 10^2 Newton's is lifted at a constant speed to a shelf 1.2 meters high in 4.0 seconds. What power is requir
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!