The gravitational potential energy of the object is 100 J.
Gravitational potential energy stored in an object is the work done in raising the object to a height <em>h</em> against the gravitational force acting on it.
The gravitational force acting on a body is its weight mg, where m is its mass and g, the acceleration due to gravity.
Work done by a force is equal to the product of the force and the displacement made by the point of application of the force.

The weight of the object is given as 20 J and it is raised to a height of 5 m.

The gravitational potential energy of the object is 100 J.
Answer
given,
wavelength (λ)= 500 n m
thickness of film= 10⁻⁴ cm
refractive index = μ = 1.375
distance traveled is double which is equal to 2 x 10⁻⁴ cm
a) Number of wave


N = 2.91
N = 3
b) phase difference is equal to
Reflection from the first surface has a 180° (½λ) phase change.
There is no phase change for the 2nd surface reflection and there is no phase difference for the 2nd wave having traveled an exact whole number of waves.
net phase difference = 
= 270°
V^2=u^2 +2aS
U is found first by considering that first 8 secs and using v=u+at. {different v and u though}
V=-u+gt.
Magnitude of u = magnitude of v if there is no resistance ( because the conservation of energy says the k. E. must be the same when it passes you as when it left your hand).... up is negative here, down is positive.
V+v=gt
2v= g x 8
V=4xg.= the initial velocity for the next calculation
V^2=(4g)^2+(2xgx21)
So v can be calculated.
Volumetric flasks are most accurate
252-364 licks
I'm not sure if it's correct or not