Their lungs would try to expand to about 4 timed the normal volume which would force air into the various body tissues. this can cause a lung expansion injury and it could case air embolism. Air embolism is when air bubbles get trapped in blood vessels. This can lead to a blockage which will could be fatal.
Answer:
A - Increase (R), Decrease (P), Decrease(q), Triple both (Q) and (R)
B - Increase(P), Increase(q), Decrease (R)
C - Triple (P) and reduce (q) to one third
Explanation:
<em>According to Le Chatelier principle, when a system is in equilibrium and one of the constraints that affect the rate of reaction is applied, the equilibrium will shift so as to annul the effects of the constraint.</em>
P and Q are reactants, an increase in either or both without an equally measurable increase in R (a product) will shift the equilibrium to the right. Also, any decrease in R without a corresponding decrease in either or both of P and Q will shift the equilibrium to the right. Hence, Increase(P), Increase(q), and Decrease (R) will shift the equilibrium to the right.
In the same vein, any increase in R without a corresponding increase in P and Q will shift the equilibrium to the left. The same goes for any decrease in either or both of P and Q without a counter-decrease in R will shift the equilibrium to the left. Hence, Increase (R), Decrease (P), Decrease(q), and Triple both (Q) and (R) will shift the equilibrium to the left.
Any increase or decrease in P with a commensurable decrease or increase in Q (or vice versa) with R remaining constant will create no shift in the equilibrium. Hence, Triple (P) and reduce (q) to one third will create no shift in the equilibrium.
C I learned that in sophomore biology
Answer:
All options are correct.
Explanation:
All options are correct.
Enzymes being faster, than chemical catalysts and their reaction rate is almost 10 times faster.They are highly specific producing large amount of good residues and can work at mild conditions, physiological pH and temperature.
They can be regulated by other molecules that either increase or reduce their activity.
Molecules that increase the activity of an enzyme are called activators, while molecules that decrease the activity of an enzyme are called inhibitors.
To determine the number of potassium laid side by side by a given distance, we simply divide the total distance to the diameter of each atom. The diameter is twice the radius of the atom. We calculate as follows:
number of atoms = 4770 / 231x10^-12 = 2.06x10^13 atoms