The <em>quadratic</em> function g(x) = (x - 5)² + 1 passes through the points (2, 10) and (8, 10) and has a vertex at (5, 1).
<h3>How to analyze quadratic equations</h3>
In this question we have a graph of a <em>quadratic</em> equation translated to another place of a <em>Cartesian</em> plane, whose form coincides with the <em>vertex</em> form of the equation of the parabola, whose form is:
g(x) = C · (x - h)² - k (1)
Where:
- (h, k) - Vertex coordinates
- C - Vertex constant
By direct comparison we notice that (h, k) = (5, 1) and C = 1. Now we proceed to check if the points (x, y) = (2, 10) and (x, y) = (8, 10) belong to the parabola.
x = 2
g(2) = (2 - 5)² + 1
g(2) = 10
x = 8
g(8) = (8 - 5)² + 1
g(8) = 10
The <em>quadratic</em> function g(x) = (x - 5)² + 1 passes through the points (2, 10) and (8, 10) and has a vertex at (5, 1).
To learn more on parabolae: brainly.com/question/21685473
#SPJ1
Answer:
3 add 1013 hay so youre welcome hoop
Step-by-step explanation:
just add it up
Answer:
6 pieces
Step-by-step explanation:
6x5=30
6x3=18
18-12=6
the total would be 31ft and 6 inches
Answer:
110
Step-by-step explanation:
Let's define
. So when we divide it by 'x+1', we can use Bezout's Theorem which states: that any polynomial(P(X)) divided by another binomial in the form 'x - a', then the remainder will be P(a).
We can use this fact to determine the remainder, because we divided our P(X) by x + 1 which is the same as x - (-1). So we plug in P(-1).
P(-1) = (-1)^11 + 101 = -1 + 101 = 110