Answer:
The direction will be
and the distance 250.75km.
Explanation:
Let's say A is the displacement vector which represents the first 170km and B the one for the next 230km. Then the components of these vector will be:

The vector which point from the origin to the final position of the plane will be R=A+B. We sum components on <em>x </em>and <em>y </em>independetly (vector property):


If
is the direction of R then:
⇒
⇒
.
The distance will be given by the magnitud of the vector R:
⇒
.
Answer:
D
Explanation:
descriptive, because scientists are writing down the observations but not making comparisons.
The answer is b 12N because
We know that<span>
W = F × d × c o s(θ)</span>
assuming theta=0 we then solve and have<span>
F=<span>W/d</span></span>
substitute known values to get:<span><span>
F=<span><span>60J/</span><span>5m</span></span>=12N</span></span>
One form of Ohm's Law says . . . . . Resistance = Voltage / Current .
R = V / I
R = (12 v) / (0.025 A)
R = (12 / 0.025) (V/I)
<em>R = 480 Ohms</em>
I don't know if the current in the bulb is steady, because I don't know what a car's "accumulator" is. (Floogle isn't sure either.)
If you're referring to the car's battery, then the current is quite steady, because the battery is a purely DC storage container.
If you're referring to the car's "alternator" ... the thing that generates electrical energy in a car to keep the battery charged ... then the current is pulsating DC, because that's the form of the alternator's output.
E = MC^2. Albert Einstein's proven formula. When mass travels at the square of speed of light, the mass gets converted into energy