The equilibrium vapour pressure is typically the pressure exerted by a liquid .... it is A FUNCTION of temperature...
Explanation:
By way of example, chemists and physicists habitually use
P
saturated vapour pressure
...where
P
SVP
is the vapour pressure exerted by liquid water. At
100
∘
C
,
P
SVP
=
1
⋅
a
t
m
. Why?
Well, because this is the normal boiling point of water: i.e. the conditions of pressure (i.e. here
1
⋅
a
t
m
) and temperature, here
100
∘
C
, at which the VAPOUR PRESSURE of the liquid is ONE ATMOSPHERE...and bubbles of vapour form directly in the liquid. As an undergraduate you should commit this definition, or your text definition, to memory...
At lower temperatures, water exerts a much lower vapour pressure...but these should often be used in calculations...especially when a gas is collected by water displacement. Tables of
saturated vapour pressure
are available.
Variations in electronegativity prompt in the unequal halves of electrons in polar molecules because when one atom is more electronegative than the other, it becomes more polar than the other.
It results in the more electronegative atom to have a slightly negative (-ve) charges, and the other atom to have partial or slightly positive(+ve) charges.
Polar molecules have unequal sharing of electrons because the atoms have unequal attraction for electrons so the sharing is unequal.
The larger the difference in electronegativity between the two atoms, the more the polar the bond.
Hydrogen bonds are involved in unequal sharing of electrons between two atoms.
To know more about variations in electronegativity in polar molecules here :
brainly.com/question/18260584?referrer=searchResults
#SPJ4