We have that the sea level pressure for Leh area is 1150mb mathematically given as
Ps= 1150 mb
<h3>
Sea level pressure</h3>
Question Parameters:
Ladakh is 800 mb.
<u>assuming </u>that Leh is at an altitude of 3500 m and every 100 m
increase in height with respect to sea level corresponds to 10 mb pressure,
Generally, for 3500m the pressure change will be 350 mb.
Therefore, here for the sea level <em>pressure</em> we need to add,
Ps=800+350
Ps= 1150 mb
For more information on Pressure visit
brainly.com/question/25688500
Answer:
the aircraft must travel at a speed of <em>73.4 m/s</em> in order to create the ideal lift.
Explanation:
We will use Bernoulli's theorem in order to determine the pressure lift:
ΔP = 1/2 (ρ)(v₂² - v₁²)
the generated pressure lift is ΔP = 1000 N/m²
Therefore,
1000 = 1/2(ρ)(v₂² - v₁²)
v₂² - v₁² = 2000 / ρ
v₂² = (2000 N/m² / 1.29 kg/m³) + (62 m/s)²
v₂ = √[ (2000 N/m² / 1.29 kg/m³) + (62 m/s)² ]
<em>v₂ = 73.4 m/s </em>
<em></em>
Therefore, the aircraft must travel at a speed of <em>73.4 m/s</em> in order to create the ideal lift.
Answer:
Pressure = ρgh
pressure (p) is measured in pascals (Pa)
density (ρ) is measured in kilograms per metre cubed (kg/m3)
The fore of gravitational field strength (g) is measured in N/kg or m/s 2
height of column (h) is measured in metres (m)
Answer = 235,200 Pa
Explanation:
Pressure = ρgh
Pressure = 1,000 x 9.8 x 24
Pressure = 235,200 Pa
The initial momentum of the system can be expressed as,

The final momentum of the system can be given as,

According to conservation of momentum,

Plug in the known expressions,

Initially, the second mass move towards the first mass therefore the initial speed of second mass will be taken as negative and the recoil velocity of first mass is also taken as negative.
Plug in the known values,

Thus, the final velocity of second mass is 2.99 m/s.
Hi there, the correct answer is C. Reactivity. I know this is the correct answer because I took this quiz recently. Color, boiling point, and density are all examples of physical properties.