Answer:
Option A is correct.
(The faster object encounters more resistance)
Explanation:
Option A is correct. (The faster object encounters more resistance)
Air resistance depends on various factors:
- Speed of the object
- Cross-sectional area of the object
- Shape of the object
Formula:

As the speed of the object increases the amount of Air resistance/drag increases on the object, as the above formula shows direct relation between Air resistance/drag and velocity i.e F ∝ v^2.
Answer:
F = 1400 N
Explanation:
It is given that,
Mass of the ball, m = 70 kg
It is moving with an acceleration of 20 m/s². We need to find the force exerted by the ball.
Force is given by the product of mass and acceleration. So,
F = ma

So, the force of 1400 N is exerted by a metal ball.
(1500 rev/min)(min / 60 s) / (3.0 s) = 8.33 rev/s²
<span>(B) </span>
<span>(1/2)(8.33 rev/s²)(3.0 s)² = 37.5 rev </span>
<span>(C) </span>
<span>(1500 rev/min)(min / 60 s)[2π(0.12 m) / rev] = 18.8 m/s</span>
If it is a true or false question then it is true
Answer:
5 ohms
Explanation:
Given:
EMF of the ideal battery (E) = 60 V
Voltage across the terminals of the battery (V) = 40 V
Current across the terminals (I) = 4 A
Let the internal resistance be 'r'.
Now, we know that, the voltage drop in the battery is given as:
Therefore, the voltage across the terminals of the battery is given as:

Now, rewriting in terms of 'r', we get:

Plug in the given values and solve for 'r'. This gives,

Therefore, the internal resistance of the battery is 5 ohms.