Covalent bonds are strong bonds. Atoms that share pairs of electrons form molecules. A molecule is a group of atoms held together by covalent bonds. A diatomic molecule is a molecule containing only two atoms.
Answer:
20.79 kilojoules
Explanation:
Using Q = m×c×∆T
Where;
Q = Quantity of heat (J)
c = specific heat capacity of solid DMSO (1.80 J/g°C)
m = mass of DMSO
∆T = change in temperature
According to the provided information, m= 50g, initial temperature = 19.0°C, final temperature= 250.0°C
Q = m×c×∆T
Q = 50 × 1.80 × (250°C - 19°C)
Q = 90 × 231
Q = 20790 Joules
To convert Joules to kilojoules, we divide by 1000 i.e.
20790/1000
= 20.79 kilojoules
Hence, 20.79 kilojoules of energy is required to convert 50.0 grams of solid DMSO to gas.
1. you need a periodic table and find the atomic mass of Cu (copper), S (sulfur) and O (oxygen). The atomic mass is the number in the box that corresponds to the element and have several decimal places.
2. atomic mass of
Cu = 63.546
S = 32.065
O = 15.9994
3. Then according to the formula of the compound, you add as many time the atomic mass of each element as subindex in the formula and add all the values together to calculate the molecular mass of the compound in grams.
4. 63.546 g + 32.065 g + ( 4 x <span>15.9994) = 159.609 g
5. this value </span><span>159.609 g is the mass in grams of one mol of CuSO4
6 the problem is asking not for the mass of one mole but the mass of 3.65 moles of CuSO4
7 then you have the multiply the value of one mol by the number of moles that the problem is asking you
8. </span><span>159.609 g x 3.65 = 582.571 g
</span>
9 the answer to the problem will be
"there are 582.571 g of CuSO4 in 3.65 moles of CuSO4"
Answer:
C. The reaction is energetically favorable.
Explanation:
The reaction which shows the removal of the terminal phosphate from the ATP is shown below:

The Gibbs' free energy change of this reaction, 
Hence, Option A is not correct.
It is a type of hydrolysis reaction in which water is being added to the molecule.
Hence, Option B is not correct.
The Gibbs' free energy change is negative which means that the reaction is energetically favorable.
Option C is correct.
Answer:
hi im just trying to get points lol hope u got ur answer
Explanation: