Halogens therefore react most vigorously with Group 1 and Group 2 metals of all main group elements.
This
B: False, because the definition
is lacking.
Force
is when two objects interact with one another causing it to either move or not
move. In our daily lives there are a lot of times force is exerted upon us,
rather force is everywhere and here are the evidences:
*Pushing
a cart
*Pushing
a wall
*Hitting
a baseball bat
*Apple
falling down from a tree.
*Balls
hitting one another
*A
swinging pendulum
*Throwing
a paper with stone above it
*Breaking
of glass in the floor
*Falling
of leaves on the grass
<span> </span>
Answer:
Energy is force times distance. For your problem, no matter how long you push, the wall still goes nowhere, so there is no obvious energy transfer. so in conclusion, you actually didn't do anything :(
Explanation:
Answer:
a ) 1.267 radian
b ) 1.084 10⁻³ mm
Explanation:
Distance of screen D = 1.65 m
Width of slit d = ?
Wave length of light λ = 687 nm.
Distance of second minimum fro centre y = 2.09 cm
Angle of diffraction = y / D
= 2.09 /1.65
= 1.267. radian
Angle of diffraction of second minimum
= 2 λ / d
so 2 λ / d = 1.267
d = 2 λ / 1.267 = (2 x 687 ) /1.267 nm
=1084.45 nm = 1.084 x 10⁻³ mm.