Answer:
The pressure exerted by camel feet is <u>2000 N/m²</u>.
Step-by-step explanation:
<h3><u>Solution</u> :</h3>
Here, we have given that ;
- Force applied on camel feet = 4000 N
- Total area of camel feet = 2 m²
We need to find the pressure exerted by camel feet.
As we know that :

Substituting all the given values in the formula to find the pressure exerted by camel feet.

Hence, the pressure exerted by camel feet is 2000 N/m².

Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m
Answer:
Velocity = 0.309 m/s
Along negative x axis
Explanation:
A pulse moving to the right along the x axis is represented by the wave function
y(x,t) = 2/ (x - 3t)² + 1
At t =0
y(x,0) = 2/ ((x - 3(0))² + 1)
=2 / (x² + 1)
At t = 1
y(x,t) = 2/ ((x - 3(1))² + 1)
= 2 /(( x - 3)² + 1)
At t = 2
y(x,t) = 2/ ((x - 3(2))² + 1)
= 2 /(( x - 6)² + 1)
For the pulse with expression y(x,t) = 4.5
²
The Velocity is
V = 2.7 / 8.73
= 0.309 m/s
Answer:
The lungs get rid of carbon dioxide and water vapor. The liver gets rid of bile, which, in addition to breaking down fats, is partially made up of the breakdown of red blood cells. The kidneys get rid of toxins from the blood. The large intestine gets rid of undigested food
The mass of the object will remain the same rather it's on the moon or on the Earth and even in other places. But the weight will change on the moon, so its weight will be different from the one it had on Earth