1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mrs_skeptik [129]
2 years ago
8

What is the relation between liquid pressure and density of liquidplzz fast ​

Physics
2 answers:
e-lub [12.9K]2 years ago
8 0

Explanation:

Pressure due to the weight of a liquid of constant density is given by p=ρgh p = ρ g h , where p is the pressure, h is the depth of the liquid, ρ is the density of the liquid, and g is the acceleration due to gravity

Hoochie [10]2 years ago
3 0

Answer:Pressure due to the weight of a liquid of constant density is given by p=ρgh p = ρ g h , where p is the pressure, h is the depth of the liquid, ρ is the density of the liquid, and g is the acceleration due to gravity.

Explanation:

You might be interested in
A small sphere is at rest at the top of a frictionless semicylindrical surface. The sphere is given a slight nudge to the right
V125BC [204]

Answer:

vi = 4.77 ft/s

Explanation:

Given:

- The radius of the surface R = 1.45 ft

- The Angle at which the the sphere leaves

- Initial velocity vi

- Final velocity vf

Find:

Determine the sphere's initial speed.

Solution:

- Newton's second law of motion in centripetal direction is given as:

                         m*g*cos(θ) - N = m*v^2 / R

Where, m: mass of sphere

             g: Gravitational Acceleration

             θ: Angle with the vertical

             N: Normal contact force.

- The sphere leaves surface at θ = 34°. The Normal contact is N = 0. Then we have:

                         m*g*cos(θ) - 0 = m*vf^2 / R

                         g*cos(θ) = vf^2 / R    

                         vf^2 = R*g*cos(θ)

                         vf^2 = 1.45*32.2*cos(34)

                        vf^2 = 38.708 ft/s

- Using conservation of energy for initial release point and point where sphere leaves cylinder:

                          ΔK.E = ΔP.E

                          0.5*m* ( vf^2 - vi^2 ) = m*g*(R - R*cos(θ))

                          ( vf^2 - vi^2 ) = 2*g*R*( 1 - cos(θ))

                          vi^2 =  vf^2 - 2*g*R*( 1 - cos(θ))

                          vi^2 = 38.708 - 2*32.2*1.45*(1-cos(34))

                          vi^2 = 22.744

                           vi = 4.77 ft/s

4 0
3 years ago
Buoyant force is the net upward force that affects on the object in a fluid
Katarina [22]

Answer:True

Explanation:

Buoyant force is the net upward force, that affect on the object in a fluid

4 0
3 years ago
Can someone help with me 1,2,3 please I will mark brainless .
Yuki888 [10]

Answer:

1) A. .33 hr

2) B. 6ft

3) A. 58mi/hr

6 0
2 years ago
The y-component of a projectile’s velocity is 12.1 m/s. When the projectile once again passes by the height from which it was la
Nat2105 [25]
It's 12.1 m/s, assuming that's the launch velocity that's given.
For projectile motion, velocity's y-component is parabolic/quadratic. It's x-component is constant, so you don't need to know it. 
6 0
3 years ago
A block with mass m = 0.450 kg is attached to one end of an ideal spring and moves on a horizontal frictionless surface. The oth
svetoff [14.1K]

Answer:

k = 26.25 N/m

Explanation:

given,

mass of the block= 0.450

distance of the block = + 0.240

acceleration = a_x = -14.0 m/s²

velocity = v_x = + 4 m/s

spring force constant (k) = ?

we know,

x = A cos (ωt - ∅).....(1)

v = - ω A cos (ωt - ∅)....(2)

a = ω²A cos (ωt - ∅).........(3)

\omega = \sqrt{\dfrac{k}{m}}

now from equation (3)

a_x = \dfrac{k}{m}x

k = \dfrac{m a_x}{x}

k = \dfrac{0.45 \times (-14)}{0.24}

k = 26.25 N/m

hence, spring force constant is equal to k = 26.25 N/m

8 0
3 years ago
Read 2 more answers
Other questions:
  • A snail crawls 5 inches in 15 minutes. What is its speed in in./min?
    15·1 answer
  • 1. in a series circuit, as light bulbs are added, the voltage at the battery increases/decreasees/remains the same
    9·1 answer
  • A. An FM radio station broadcasts at a frequency of 101.3 MHz. What is the wavelength?
    15·1 answer
  • The position of a particle in millimeters is given by s = 133 - 26t + t2 where t is in seconds. Plot the s-t and v-t relationshi
    5·1 answer
  • Find your average speed if you run 50m in 10s
    13·2 answers
  • A long, thin rod parallel to the y-axis is located at x = -1.0 cm and carries a uniform linear charge density of +1.0 nC/m. A se
    6·1 answer
  • g The fundamental premise of simple harmonic motion is that a force must be proportional to an object's displacement. Is anythin
    14·1 answer
  • Maggie is a member of her school’s environmental club and is interested in recycling. She asks the question, “How does exposure
    5·1 answer
  • 4. A steel cable spanning a river is 220.000 m long when the temperature is 30.°C.
    9·1 answer
  • The following equation shows the position of a particle in time t, x=at2i + btj where t is in second and x is in meter. A=2m/s2,
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!