Answer:
Answer to A. helium, neon, argon, krypton, xenon, and radon, B. Elemental hydrogen (H, element 1), nitrogen (N, element 7), oxygen (O, element 8), fluorine (F, element 9), and chlorine (Cl, element 17) are all gases at room temperature, and are found as diatomic molecules (H2, N2, O2, F2, Cl2). C. Elements Compounds
Ar (argon) HBr (hydrogen bromide) C 3H 8 (propane)
Kr (krypton) HI (hydrogen iodide) C 4H 10 (butane)
Xe (xenon) HCN (hydrogen cyanide)* CO (carbon monoxide)
Rn (radon) H 2S (hydrogen sulfide) CO 2 (carbon dioxide)
Explanation:
second compound
Let molar mass of x is = X
Let molar mass of y is = Y
Moles of x in second compound = Mass / molar mass = 7 / X
Moles of y in second compound = Mass / molar mass = 4.5 / Y
For second compound
7 / X : 4.5/ Y = 1:1
Therefore
X / Y = 7/4.5
Y / X = 4.5/ 7
The mass of x in first compound = 14g
moles of x in first compound = 14/X
Mass of y in first compound = 3
moles of y in first compound = 3 / Y
14 / X : 3/ Y = 14Y / 3X = 14 X 4.5 / 3 X 7 = 3 :1
Thus molar ratio in first compound = moles of x / Moles of y = 3:2
Formula = x3y
Answer:
None
Explanation:
Cl₂ is above Br₂ in the activity series.
Bromine will not displace chlorine from its salts.
The reaction will not occur.
Answer:
2K (s) + Cl₂ (g) ⇒ 2KCl (s)
Explanation:
Potassium and chlorine gas combine to form potassium chloride which is an ionic compound. The reaction is a type of combination reaction in which chlorine is being added to the metal, potassium.
Potassium reacts violently with the chlorine which is yellowish green in color to produce white solid of potassium chloride.
The balanced reaction is shown below as:
2K (s) + Cl₂ (g) ⇒ 2KCl (s)
Answer:
A. Felsic igneous rocks are less dense than mafic igneous rock
Explanation:
"Felsic rocks are composed of larger quantities of silicates and therefore are less dense. Felsic magma is less dense and more viscous than mafic magma." - study.com