Answer:
w = 11.211 KN/m
Explanation:
Given:
diameter, d = 50 mm
F.S = 2
L = 3
Due to symmetry, we have:



To find the maximum intensity, w, let's take the Pcr formula, we have:

Let's take k = 1
Substituting figures, we have:

Solving for w, we have:

w = 11211.14 N/m = 11.211 KN/m
Since Area, A= pi * (0.05)²
. This means it is safe
The maximum intensity w = 11.211KN/m
Answer:
<em>The frequency changes by a factor of 0.27.</em>
<em></em>
Explanation:
The frequency of an object with mass m attached to a spring is given as
= 
where
is the frequency
k is the spring constant of the spring
m is the mass of the substance on the spring.
If the mass of the system is increased by 14 means the new frequency becomes
= 
simplifying, we have
= 
= 
if we divide this final frequency by the original frequency, we'll have
==>
÷
==>
x
==> 1/3.742 = <em>0.27</em>
This is a question on conservation of energy. That is,
mgh + KE1 = KE2
mgh +1/2mv1^2 = 1/2mv2^2
gh + 1/2v1^2 = 1/2v2^2
Where, h = 0.2 m, v1 =3.04 m/s
Therefore,
v2 = Sqrt [2(gh+1/2v1^2)] = Sqrt [2(9.81*0.2 + 1/2*3.04^2)] = 7.26 m/s
Now, Volumetric flow rate, V/time, t = Surface area, A*velocity, v
Where,
V = Av = πD^2/4*3.04 = π*(2.51/100)^2*1/4*3.04 = 1.504*10^-3 m^3/s
At 0.2 m below,
V = 1.504*10^-3 m^3/s = A*7.26
A = (1.504*10^-3)/7.26 = 2.072*10^-4 m^2
But, A = πr^2
Then,
r = Sqrt (A/π) = Sqrt (2.072*10^-4/π) = 0.121*10^-3 m
Diameter = 2r = 0.0162 m = 1.62 cm
Answer:
1.89mol
Explanation:
The entropy change during free expansion is express as

Where S is the entropy of the system,
n is the amount of mole
R is the gas constant = 8.314 and
V is the volume occupied at the initial and final stage
since the process is n adiabatic free expansion, the entropy of the system is constant. Hence we can re-write the equation as

where the
and 
and
Now if we substitute in values we arrive at

Answer:
A. A sea wave generated by a displacement of water
Explanation: