Answer:
The correct answers are the proportionality of the fields concerning distance, vector fields, and forces at a distance.
Explanation:
The similarities between magnetic fields and electric fields are that electric fields are produced by two charges that can be positive and negative. Magnetic fields are associated with two magnetic poles, although they are also produced by moving charges. Both fields are inversely proportional to the square of the distance between the sources, both fields are vectorial and both act by distant forces.
Have a nice day!
Refer to the diagram shown below.
i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω
Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5 (10
Also,
R₂*i = 9.5 (2)
Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A
From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)
Answer: 0.08 Ω
Answer:
The sound level of the 26 geese is 
Explanation:
From the question we are told that
The sound level is 
The number of geese is 
Generally the intensity level of sound is mathematically represented as
The intensity of sound level in dB for one goose is mathematically represented as
![Z_1 = 10 log [\frac{I}{I_O} ]](https://tex.z-dn.net/?f=Z_1%20%3D%2010%20log%20%5B%5Cfrac%7BI%7D%7BI_O%7D%20%5D)
Where I_o is the threshold level of intensity with value 
is the intensity for one goose in 
For 26 geese the intensity would be

Then the intensity of 26 geese in dB is
![Z_{26} = 10 log[\frac{26 I }{I_o} ]](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%5B%5Cfrac%7B26%20I%20%7D%7BI_o%7D%20%5D)
![Z_{26} = 10 log (\ \ 26 * [\frac{ I }{I_o} ]\ \ )](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%20%28%5C%20%5C%2026%20%2A%20%20%5B%5Cfrac%7B%20I%20%7D%7BI_o%7D%20%5D%5C%20%5C%20%29)
![Z_{26} = 10 log (\ \ 26 \ \ ) * (\ \ 10 log [\frac{ I }{I_o} ]\ \ )](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%20%28%5C%20%5C%2026%20%20%5C%20%5C%20%29%20%2A%20%20%20%28%5C%20%5C%20%2010%20log%20%5B%5Cfrac%7B%20I%20%7D%7BI_o%7D%20%5D%5C%20%5C%20%29)
From the law of logarithm we have that
![Z_{26} = 10 log 26 + 10 log [\frac{I}{I_0} ]](https://tex.z-dn.net/?f=Z_%7B26%7D%20%3D%2010%20log%2026%20%2B%20%2010%20log%20%5B%5Cfrac%7BI%7D%7BI_0%7D%20%5D)


The andwer of tye question is 3O2
Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation: