Let's be clear: The plane's "395 km/hr" is speed relative to the
air, and the wind's "55 km/hr" is speed relative to the ground.
Before the wind hits, the plane moves east at 395 km/hr relative
to both the air AND the ground.
After the wind hits, the plane still maintains the same air-speed.
That is, its velocity relative to the air is still 395 km/hr east.
But the wind vector is added to the air-speed vector, and the
plane's velocity <span>relative to the ground drops to 340 km/hr east</span>.
Answer:
a. 1.75 Nm²/C
b. Yes.
Explanation:
a. Electric Flux is given as:
Φ = E*A*cosθ
Where E = electric flux
A = Surface area
Φ = 14 * 0.25 * cos60
Φ = 1.75 Nm²/C
b. Yes, the shape of the sheet will affect the Flux through it. This is because flux is dependent on area of the surface and the area is dependent on the shape of the surface.
Answer:
ok
Explanation:
the correct answer is C please follow me
Answer:
the velocity is zero, the acceleration is directed downward, and the force of gravity acting on the ball is directed downward
Explanation:
Is this exercise in kinematics
v = v₀ - g t
where g is the acceleration of the ball, which is created by the attraction of the ball to the Earth.
At the highest point
velocity must be zero.
The acceleration depends on the Earth therefore it is constant at this point and with a downward direction.
The force of the earth on the ball is towards the center of the Earth, that is, down
all other alternatives are wrong