Answer:
0.5 m
14.00595
8 m/s, 0.0625 s
5.71314 m/s
Explanation:
k = Spring constant = 128 N/m
A = Amplitude
E = Energy in spring = 16 J
Energy in spring is given by

The amplitude is 0.5 m
Time period is given by

Number of oscillations is given by

The number of oscillations is 14.00595
For maximum speed

The maximum speed is 8 m/s
For a distance of 0.5 m which is the amplitude

The time taken would be 0.0625 s
The maximum kinetic energy is equal to the mechanical energy

At x = 0.35 m

The speed of the block is 5.71314 m/s
A.
Waves can transfer energy but they can’t transfer matter
Answer:
13 m/s east
Explanation:
We can solve the problem by using the law of conservation of momentum, which states that the total momentum before the collision is equal to the total momentum after the collision:

where
m = 0.1 kg is the mass of each puck
u1 = +13 m/s is the initial velocity of puck 1
u2 = -18 m/s is the initial velocity of puck 2 (here I assume the west direction to be the negative direction, so I put a negative sign)
v1 = -18 m/s is the final velocity of puck 1
v2 = ? is the final velocity of puck 2
Simplifying m from the formula and substituting the data, we can find the final velocity of puck 2, v2:

And the positive sign means that puck 2 is moving east.
Answer:
v = 0.33 [m/s]
Explanation:
We must remember that speed is defined as the relationship between the displacement in a given time. In this way, we can propose the following equation.

where:
v = velocity [m/s]
d = displacement = 40 [m]
t = 2 [min] = 120 [s]
Now replacing we have:
![v=40/120\\v=0.33[m/s]](https://tex.z-dn.net/?f=v%3D40%2F120%5C%5Cv%3D0.33%5Bm%2Fs%5D)