<span>The ball with an initial velocity of 2 m/s rebounds at 3.6 m/s
The ball with an initial velocity of 3.6 m/s rebounds at 2 m/s
There are two principles involved here
Conservation of momentum and conservation of energy.
I'll use the following variables
a0, a1 = velocity of ball a (before and after collision)
b0, b1 = velocity of ball b (before and after collision)
m = mass of each ball.
For conservation of momentum, we can create this equation:
m*a0 + m*b0 = m*a1 + m*b1
divide both sides by m and we get:
a0 + b0 = a1 + b1
For conservation of energy, we can create this equation:
0.5m(a0)^2 + 0.5m(b0)^2 = 0.5m(a1)^2 + 0.5m(b1)^2
Once again, divide both sides by 0.5m to simplify
a0^2 + b0^2 = a1^2 + b1^2
Now let's get rid of a0 and b0 by assigned their initial values. a0 will be 2, and b0 will be -3.6 since it's moving in the opposite direction.
a0 + b0 = a1 + b1
2 - 3.6 = a1 + b1
-1.6 = a1 + b1
a1 + b1 = -1.6
a0^2 + b0^2 = a1^2 + b1^2
2^2 + -3.6^2 = a1^2 + b1^2
4 + 12.96 = a1^2 + b1^2
16.96 = a1^2 + b1^2
a1^2 + b1^2 = 16.96
The equation a1^2 + b1^2 = 16.96 describes a circle centered at the origin with a radius of sqrt(16.96). The equation a1 + b1 = -1.6 describes a line with slope -1 that intersects the circle at two points. Those points being (a1,b1) = (-3.6, 2) or (2, -3.6). This is not a surprise given the conservation of energy and momentum. We can't use the solution of (2, -3.6) since those were the initial values and that would imply the 2 billiard balls passing through each other which is physically impossible. So the correct solution is (-3.6, 2) which indicates that the ball going 2 m/s initially rebounds in the opposite direction at 3.6 m/s and the ball originally going 3.6 m/s rebounds in the opposite direction at 2 m/s.</span>
The circular groove is provided in a saucer for placing the tea only to prevent the cup from falling over in the case of sudden shocks. Other reason could be to provide support to the cup, or else the cup will fall when we change our direction due to Inertia of Direction.
Your answer is a new experiment, since it's something that hasn't been tried before, or has, but resulted in with lots of errors.
Answer:
Fg = 4.2*10²² N
Explanation:
The gravitational force between any two masses, provided that can be approximated by point masses (comparing their diameters with the distance between them), obeys the Newton's Universal Law of Gravitation, which states that the force (always attractive) is proportional to the product of the masses and inversely proportional to the square of the distance between them (this as a consequence of our Universe being three-dimensional), as follows:

So, if one of the masses increases 6 times, the force between them will be directly 6 times larger, so the new magnitude of the force will be as follows:
Fg₂ = Fg₁*6 = 7*10²¹ N* 6 = 4.2*10²² N
The carrier frequency remains constant during amplitude modulation. :)