Answer:
An unbalanced force (net force) acting on an object changes its speed and/or direction of motion. ... A net force = unbalanced force. If however, the forces are balanced (in equilibrium) and there is no net force, the object will not accelerate and the velocity will remain constant.
Explanation:
Answer:
C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀) we see that for the same t v₁> v₂
Explanation:
You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.
Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.
Stone 1
y₁ = v₀₁ t + ½ g t²
y₁ = 0 + ½ g t²
Rock2
It comes out a little later, let's say a second later, we can use the same stopwatch
t ’= (t-t₀)
y₂ = v₀₂ t ’+ ½ g t’²
y₂ = 0 + ½ g (t-t₀)²
y₂ = + ½ g (t-t₀)²
Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to
S = y₁ -y₂
S = ½ g t²– ½ g (t-t₀)²
S = ½ g [t² - (t²- 2 t to + to²)]
S = ½ g (2 t t₀ - t₀²)
S = ½ g t₀ (2 t -t₀)
This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.
For t <to. The rock y has not left and the distance increases
For t> = to. the ratio (2t/to-1)> 1 therefore the distance increases as time
passes
Now we can analyze the different statements
A) false. The difference in height increases over time
B) False S increases
C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t v₁> v₂
Answer:
248
Explanation:
L = Inductance of the slinky = 130 μH = 130 x 10⁻⁶ H
= length of the slinky = 3 m
N = number of turns in the slinky
r = radius of slinky = 4 cm = 0.04 m
Area of slinky is given as
A = πr²
A = (3.14) (0.04)²
A = 0.005024 m²
Inductance is given as


N = 248
Explanation:
The two postulates of special theory of relativity
Postulate 1: The law of physics are invariant under any of inertial frame of reference.
Postulate 2: The velocity of light is remains same in each ans every frame of reference and independent of relativity.
They are differ from classical mechanics that in classical mechanics there is no change in mass and length in relative velocity but in relativistic mechanics it changes.
These two postulates implements in phenomenon like time dilation , length contraction etc.
Thanks