Answer:
- the coating’s index of refraction is 1.25
- the required thickness is 104.1667 nm
Explanation:
Given the data in the question;
Thickness of coating t = 100 nm
wavelength λ = 500nm
we know that refractive index is;
t = λ/4n
make n, the subject of formula
t4n = λ
n = λ / 4t
we substitute
n = 500 / ( 4 × 100 )
n = 500 / 400
n = 1.25
Therefore, the coating’s index of refraction is 1.25
2)
given that;
Index of refraction of the coating; n = 1.20
λ = 500 nm
thickness of coating t = ?
t = λ / 4n
we substitute
t = 500 / ( 4 × 1.2 )
t = 500 / 4.8
t = 104.1667 nm
Therefore, the required thickness is 104.1667 nm
If the acceleration is constant (negative or positive) the instantaneous acceleration cannot be
Average acceleration: [final velocity - initial velocity ] /Δ time
Instantaneous acceleration = d V / dt =slope of the velocity vs t graph
If acceleration is increasing, the slope of the curve at one moment will be higher than the average acceleration.
If acceleration is decreasing, the slope of the curve at one moment will be lower than the average acceleration.
If acceleration is constant, the acceleration at any moment is the same, then only at constant accelerations, the instantaneuos acceleration is the same than the average acceleration.
Constant zero acceleration is a particular case of constant acceleration, so at constant zero acceleration the instantaneous accelerations is the same than the average acceleration: zero. But, it is not true that only at zero acceleration the instantaneous acceleration is equal than the average acceleration.
That is why the only true option and the answer is the option D. only at constant accelerations.
The acceleration of body is given 16.3m/s2 and the force is given 4.6 N then
We know,
Force=mass*acceleration
Then,
Mass=force/acceleration
Mass=4.6/16.3
Mass=0.28kg
Answer:
cindi
Explanation:
cindi's work done is larger than all the other students combined