Answer:
4.80 m
Explanation:
We are given the mass of the high jumper, its initial velocity, and the acceleration of gravity. We are trying to find the vertical displacement of the high jumper.
Let's set the upwards direction to be positive and the downwards direction to be negative.
List out the relevant known variables.
- v₀ = 9.7 m/s
- a = -9.8 m/s²
- Δx = ?
We still need one more variable in order to use the constant acceleration equations. Since we are trying to find the max height of the jumper, we can use the fact that at the top of its trajectory, its final velocity will be 0 m/s.
4. v = 0 m/s
Using these four variables, let's find the constant acceleration equation that contains these variables:
Substitute the known values into the equation and solve for Δx.
- (0)² = (9.7)² + 2(-9.8)Δx
- 0 = 94.09 + (-19.6)Δx
- -94.09 = -19.6Δx
- Δx = 4.80
The high jumper can jump to a max height of 4.80 m.
If DNA is improperly copied, the cell will function differently.
This is called a mutation.
Mutated cells do not do the originally intended purpose.
To solve this exercise, we will first proceed to calculate the electric force given by the charge between the proton and the electron (it). From the Force we will use Newton's second law that will allow us to find the acceleration of objects. The Coulomb force between two charges is given as

Here,
k = Coulomb's constant
q = Charge of proton and electron
r = Distance
Replacing we have that,


The force between the electron and proton is calculated. From Newton's third law the force exerted by the electron on proton is same as the force exerted by the proton on electron.
The acceleration of the electron is given as



The acceleration of the proton is given as,



Probably gas because it will reach Nobel gas state
Be easy-going and be yourself.