1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dsp73
3 years ago
6

Help ASAP please (: The waves with the MOST energy have

Physics
1 answer:
tino4ka555 [31]3 years ago
5 0

Answer: C

high; large

Explanation:

The wave energy is related to its amplitude and frequency.

The wave energy is proportional to the amplitude of the wave. So, wave with the most energy will have high amplitude.

Also, frequency is related to wave energy. The larger the frequency, the more the energy of the wave.

Therefore, The waves with the MOST energy have high amplitudes and large

frequencies.

You might be interested in
(a) Calculate the height of a cliff if it takes 2. 35 s for a rock to hit the ground when it is thrown straight up from the clif
Natali [406]

(a) The height of the cliff will be 8.26 meters.

(b) The time would it take to reach the ground will be 0.717 sec.

<h3>What is velocity?</h3><h3 />

The change of displacement with respect to time is defined as the velocity. Velocity is a vector quantity. it is a time-based component.

(a) The height of the cliff will be 8.26 meters.

According to Newton's second equation of motion

\rm H =ut-\frac{1}{2} gt^2 \\\\ \rm H =8\times 2.35-\frac{1}{2} 9.81 (2.35)^2\\\\\rm H =8.16 \; m

Hence The height of the cliff will be 8.26 meters.

(b)The time would it take to reach the ground will be 0.717 sec.

We must have the final velocity to find the time so;

\rm v^2=u^2+2gh\\\\ \rm v^2=8^2+2\times 9.81 \times 8.6 \\\\ \rm v= \sqrt{8^2+2\times 9.81 \times 8.6}\\\\\rm v=15.03 \;m/sec

According to Newton's third equation of motion ;

\rm v=u-gt \\\\ \rm t=\frac{v-u}{g} \\\\ \rm t=\frac{15.03-8}{9.81} \\\\ \rm t=0.717 sec.

Hence the time would it take to reach the ground will be 0.717 sec.

To learn more about the velocity refer to the link ;

brainly.com/question/862972

3 0
2 years ago
A cold glass is left sitting outside on a hot day. Soon, water droplets form on the outside of the glass. Describe the events th
ikadub [295]
Evaporation must happen
8 0
3 years ago
if a car is traveling at an average speed of 60 kilometers per hour, how long does it take to travel 12 kilometers?
VashaNatasha [74]
Im sure its twelve minutes
5 0
3 years ago
The sensor in the torso of a crash test dummy records the magnitude and direction of the net force acting on the dummy.If the du
Sunny_sXe [5.5K]

Here in crash test the two forces are acting on the dummy in two different directions

As we know that force is a vector quantity so we need to use vector addition laws in order to find the resultant force on it.

So here two forces are given in perpendicular direction with each other so as per vector addition law we need to use Pythagoras theorem to find the resultant of two vectors

so we can say

F_{net} = \sqrt{F_1^2 + F_2^2}

here given that

F_1 = 130.0 N

F_2 = 4500.0 N

now we will plug in all data in the above equation

F_{net} = \sqrt{4500^2 + 130^}

F_{net} = 4501.9 N

so it will have net force 4501.9 N which will be reported by sensor

4 0
3 years ago
Read 2 more answers
An element has the following natural abundances and isotopic masses: 90.92% abundance with 19.99 amu, 0.26% abundance with 20.99
sashaice [31]

<u>Answer:</u> The average atomic mass of the given element is 20.169 amu.

<u>Explanation:</u>

Average atomic mass of an element is defined as the sum of masses of the isotopes each multiplied by their natural fractional abundance.

Formula used to calculate average atomic mass follows:

\text{Average atomic mass }=\sum_{i=1}^n\text{(Atomic mass of an isotopes)}_i\times \text{(Fractional abundance})_i     .....(1)

We are given:

  • For isotope 1:

Mass of isotope 1 = 19.99 amu

Percentage abundance of isotope 1 = 90.92 %

Fractional abundance of isotope 1 = 0.9092

  • For isotope 2:

Mass of isotope 2 = 20.99 amu

Percentage abundance of isotope 2 = 0.26%

Fractional abundance of isotope 2 = 0.0026

  • For isotope 3:

Mass of isotope 3 = 21.99 amu

Percentage abundance of isotope 3 = 8.82%

Fractional abundance of isotope 3 = 0.0882  

Putting values in equation 1, we get:

\text{Average atomic mass}=[(19.99\times 0.9092)+(20.99\times 0.0026)+(21.99\times 0.0882)]

\text{Average atomic mass}=20.169amu

Hence, the average atomic mass of the given element is 20.169 amu.

4 0
3 years ago
Other questions:
  • A 15kg beam that is 10m long is placed on a fulcrum that is 3m from the end an 80kg person sits at the end closer to the fulcrum
    7·1 answer
  • True or false: Alcohol can cause an uncontrolled ________ of the eyes, making good vision almost impossible
    10·1 answer
  • Tenemos un muelle sobre el que se ejerce una fuerza de 20 N produciéndose una deformación de 5 cm. Determinar: a) la constante r
    13·1 answer
  • the form of energy that is stored in large objects because of its internal condition, such as compression or tension, is called
    5·1 answer
  • A mass is suspended on a vertical spring. Initially, the mass is in equilibrium. Then, it is pulled downward and released. The m
    9·1 answer
  • Why did Thomson's results from experimenting with cathode rays a big change in scientific thought about atoms?
    11·1 answer
  • What does the blackboard do when white light falls on it?​
    14·1 answer
  • 3. If there is an atomic mass of 47
    6·1 answer
  • 3. Riddle:
    13·2 answers
  • How is the thermal efficiency of a heat engine defined?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!