The answer is True because elements in a compound combine and become an entirely different substance with its own unique properties.
<span>As we know that
1 cu cm H2O = 1 mL H2O = 1g H2O
now
Heat of fusion of water = 79.8 cal/g
and
Heat of vaporization of water = 540 cal/g
Atomic weight of water : H=1 O=16 H2O=18
now by calculating and putting values
65.5gH2O x 79.8cal/gH2O x 1gH2O/540cal = 9.68g H2O (steam)
9.68gH2O x 1molH2O/18gH2O x 22.4LH2O/1molH2O = 12.0 L H2O
hope it helps</span>
<span>The pH of a vinegar solution is 4.15. To find the H+ concentration of the solution use the following equation -log(H+)=pH.
Insert the pH into the equation to get, -log(H+) = 4.15
Rearrange the equation to get, 10^(-4.15) = H+
Finally, you can solve for H+.
The hydrogen ion concentration of the vinegar solution is .0000708 M.</span>
Answer:
the final volume of the gas is
= 1311.5 mL
Explanation:
Given that:
a sample gas has an initial volume of 61.5 mL
The workdone = 130.1 J
Pressure = 783 torr
The objective is to determine the final volume of the gas.
Since the process does 130.1 J of work on its surroundings at a constant pressure of 783 Torr. Then, the pressure is external.
Converting the external pressure to atm ; we have
External Pressure
:


The workdone W =
V
The change in volume ΔV= 
ΔV = 
ΔV = 
ΔV = 1.25 L
ΔV = 1250 mL
Recall that the initial volume = 61.5 mL
The change in volume V is 

multiply through by (-), we have:

= 1250 mL + 61.5 mL
= 1311.5 mL
∴ the final volume of the gas is
= 1311.5 mL
Nothing, he shouldn’t be able to move it. Think about it like this say you try really hard to push something that is 5,000 pounds and you push as hard as you can. Well you can’t move it bc it weighs more than you can push. I’m sure their is a equation you can use to see how much you can push (body weight=force?)