1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Black_prince [1.1K]
3 years ago
14

How do scientists and engineers use math to help them?

Engineering
1 answer:
VikaD [51]3 years ago
7 0
Math (e.g., algebra, geometry, calculus, computer computation) is used both as a tool to create mathematical models that describe physical phenomena and as a tool to evaluate the merit of different possible solutions. ... In engineering, math and science are tools used within the engineering design process.
Biologists use math as they plot graphs to help them understand equations, run small “trial and error” tests with some sample numbers when developing algorithms, and use the R project for analyzing protein sequences and structures. Electrical engineers use math in many ways in their career. They use math to help design and test electrical equipment. They use math to calculate amp and volt requirements for electrical projects. They use math in creating computer simulations and designs for new products.
You might be interested in
Lynx eat snowshoe hares, and snowshoes hears eat plants. Which term can be applied to the lynx in this food chain example? Prima
erastova [34]

Answer:

primary consumer because YES

3 0
2 years ago
Find the mathematical equation for SF distribution and BM diagram for the beam shown in figure 1.​
Novosadov [1.4K]

Answer:

i) SF: v(x) = \frac{(w_0* x )^2}{2L}

ii) BM : = \frac{(w_0*x)^3}{6L}

Explanation:

Let's take,

\frac{y}{w_0} = \frac{x}{L}

Making y the subject of formula, we have :

y = \frac{x}{L} * w_0

For shear force (SF), we have:

This is the area of the diagram.

v(x) = \frac{1}{2} * y = \frac{1}{2} * \frac{x}{L} * w_0

= \frac{(w_0* x )^2}{2L}

The shear force equation =

v(x) = \frac{(w_0* x )^2}{2L}

For bending moment (BM):

BM = v(x) * \frac{x}{3}

= \frac{(w_0* x )^2}{2L}  * \frac{x}{3}

= \frac{(w_0*x)^3}{6L}

The bending moment equation =

= \frac{(w_0*x)^3}{6L}

5 0
4 years ago
Consider tests of an unswept wing that spans the wind tunnel and whose airfoil section is NACA 23012. Since the wing model spans
Dominik [7]

Answer:

Check the explanation

Explanation:

to know the lift per unit span (N/m) that is expected to be measured when the wing attack angle is 4°

as well as the corresponding section lift coefficient and die moment coefficient .

Kindly check the attached image below to see the step by step explanation to the above question.

3 0
3 years ago
Determine the following parameters for the water having quality x=0.7 at 200 kPa:
ra1l [238]

Solution :

Given :

Water have quality x = 0.7 (dryness fraction) at around pressure of 200 kPa

The phase diagram is provided below.

a). The phase is a standard mixture.

b). At pressure, p = 200 kPa, T = $T_{saturated}$

   Temperature = 120.21°C

c). Specific volume

  $v_{f}= 0.001061, \ \ v_g=0.88578 \ m^3/kg$

  $v_x=v_f+x(v_g-v_f)$

       $=0.001061+0.7(0.88578-0.001061)$

       $=0.62036 \ m^3/kg$

d). Specific energy (u_x)

    $u_f=504.5 \ kJ/kg, \ \ u_{fg}=2024.6 \ kJ/kg$

   $u_x=504.5 + 0.7(2024.6)$

         $=1921.72 \ kJ/kg$

e). Specific enthalpy $(h_x)$

   At $h_f = 504.71, \ \ h_{fg} = 2201.6$

   h_x=504.71+(0.7\times 2201.6)

        $= 2045.83 \ kJ/kg$

f). Enthalpy at m = 0.5 kg

  $H=mh_x$

       $= 0.5 \times 2045.83$

       = 1022.91 kJ

7 0
3 years ago
Ammonia enters the expansion valve of a refrigeration system at a pressure of 1.4 MPa and a temperature of 32degreeC and exits a
AveGali [126]

Answer:

the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %

Explanation:

given data

pressure p1 = 1.4 MPa = 14 bar

temperature t1 = 32°C

exit pressure = 0.08 MPa = 0.8 bar

to find out

the quality of the refrigerant exiting the expansion valve

solution

we know here refrigerant undergoes at throtting process so

h1 = h2

so by table A 14 at p1 = 14 bar

t1 ≤ Tsat

so we use equation here that is

h1 = hf(t1) = 332.17 kJ/kg

this value we get from table A13

so as h1 = h2

h1 = h(f2)  + x(2) * h(fg2)

so

exit quality  = \frac{h1 - h(f2)}{h(fg2)}

exit quality  = \frac{332.17- 9.04}{1382.73)}

so exit quality = 0.2337 = 23.37 %

the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %

5 0
3 years ago
Other questions:
  • A steady state and continuous separator has a total feed rate of 100. kg/h of a 55.0 wt. % benzene mixture. The balance is tolue
    7·1 answer
  • python Write a program that takes a date as input and outputs the date's season. The input is a string to represent the month an
    7·1 answer
  • In a reversible process both the system and surrondings can be returned to their initial states. a)-True b)-False
    14·1 answer
  • Air at 27°C, 1 atm flows parallel to a flat plate, which is electronically heated. The plate is 0.5 m long in the direction of f
    8·1 answer
  • A moving-coil instrument, which gives full-scale deflection with 0.015 A has a copper coil having resistance of 1.5 Ohm at 15°C
    7·1 answer
  • A three-point bending test is performed on a glass specimen having a rectangular cross section of height 5.3 mm and width 11.6 m
    11·1 answer
  • Technician A states that a scan tool can read
    13·1 answer
  • ASAP correct answer plss When you are driving, if you see this traffic sign it means
    8·1 answer
  • What is code in Arduino to turn led on and off
    10·1 answer
  • Silicon chips are used primarily in ?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!