1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gulaghasi [49]
3 years ago
12

11. Technicians A and B are discussing

Engineering
1 answer:
algol [13]3 years ago
5 0

Answer:

C. Neither Technician A nor B

Explanation:

Just took the test

You might be interested in
Give three examples of how engineering has made human life better in your opinion.
omeli [17]

Answer:

This is in your opinion. If you truly wish, you may comment on this and tell me that you need something.

Explanation:

3 0
3 years ago
What is pneumatic troubleshooting
jekas [21]

Answer:

Compressed Air.

Explanation:This stuffs at plantengineering.com my fellow student. Good luck on the test!

5 0
3 years ago
An empty metal can is heated to 908C and sealed. It is then placed in a room to cool to 208C. What is the pressure inside the ca
Natali5045456 [20]

The pressure inside the can upon cooling is 0.4 atm.

<u>Explanation:</u>

Given -

Initial Temperature, T1 = 908°C = 908 + 273 K = 1181 K

Final Temperature, T2 = 208°C = 208 + 273 K = 481 K

Pressure upon cooling, P2 = ?

Using Gay Lussac's law:

P1/T1 = P2/T2

P2 = P1 X T2 / T1

P2 = 1 atm X 481 / 1181

P2 = 0.4 atm

Therefore, the pressure inside the can upon cooling is 0.4 atm.

3 0
3 years ago
The diameter of a cylindrical water tank is Do and its height is H. The tank is filled with water, which is open to the atmosphe
Sonbull [250]

Answer:

a. The time required for the tank to empty halfway is presented as follows;

t_1   =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)

b. The time it takes for the tank to empty the remaining half is presented as follows;

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The total time 't', is presented as follows;

t =  \sqrt{2}  \cdot \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} }

Explanation:

a. The diameter of the tank = D₀

The height of the tank = H

The diameter of the orifice at the bottom = D

The equation for the flow through an orifice is given as follows;

v = √(2·g·h)

Therefore, we have;

\dfrac{P_1}{\gamma} + z_1 + \dfrac{v_1}{2 \cdot g} = \dfrac{P_2}{\gamma} + z_2 + \dfrac{v_2}{2 \cdot g}

\left( \dfrac{P_1}{\gamma} -\dfrac{P_2}{\gamma} \right) + (z_1 - z_2) + \dfrac{v_1}{2 \cdot g} =  \dfrac{v_2}{2 \cdot g}

Where;

P₁ = P₂ = The atmospheric pressure

z₁ - z₂ = dh (The height of eater in the tank)

A₁·v₁ = A₂·v₂

v₂ = (A₁/A₂)·v₁

A₁ = π·D₀²/4

A₂ = π·D²/4

A₁/A₂ = D₀²/(D²) = v₂/v₁

v₂ = (D₀²/(D²))·v₁ = √(2·g·h)

The time, 'dt', it takes for the water to drop by a level, dh, is given as follows;

dt = dh/v₁ = (v₂/v₁)/v₂·dh = (D₀²/(D²))/v₂·dh = (D₀²/(D²))/√(2·g·h)·dh

We have;

dt = \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } dh

The time for the tank to drop halfway is given as follows;

\int\limits^{t_1}_0 {} \,  dt = \int\limits^h_{\frac{h}{2} } { \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } } \, dh

t_1  =\left[{ \dfrac{D_0^2}{D\cdot \sqrt{2\cdot g} } \cdot\dfrac{h^{-\frac{1}{2} +1}}{-\frac{1}{2} +1 } \right]_{\frac{H}{2} }^{H} =\left[ { \dfrac{D_0^2 \cdot 2\cdot \sqrt{h} }{D\cdot \sqrt{2\cdot g} } \right]_{\frac{H}{2} }^{H} = { \dfrac{2 \cdot D_0^2 }{D\cdot \sqrt{2\cdot g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right)

t_1   = { \dfrac{2 \cdot D_0^2 }{D^2\cdot \sqrt{2\cdot g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right) =  { \dfrac{\sqrt{2}  \cdot D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right)

t_1   =   { \dfrac{\sqrt{2}  \cdot D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{H} - \sqrt{\dfrac{H}{2} } \right) = { \dfrac{D_0^2 }{D^2\cdot \sqrt{ g} } \cdot \left(\sqrt{2 \cdot H} - \sqrt{{H} } \right) =\dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)The time required for the tank to empty halfway, t₁, is given as follows;

t_1   =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right)

(b) The time it takes for the tank to empty completely, t₂, is given as follows;

\int\limits^{t_2}_0 {} \,  dt = \int\limits^{\frac{h}{2} }_{0 } { \dfrac{D_0^2}{D} \cdot\dfrac{1}{\sqrt{2\cdot g \cdot h} } } \, dh

t_2  =\left[{ \dfrac{D_0^2}{D\cdot \sqrt{2\cdot g} } \cdot\dfrac{h^{-\frac{1}{2} +1}}{-\frac{1}{2} +1 } \right]_{0}^{\frac{H}{2} } =\left[ { \dfrac{D_0^2 \cdot 2\cdot \sqrt{h} }{D\cdot \sqrt{2\cdot g} } \right]_{0 }^{\frac{H}{2} } = { \dfrac{2 \cdot D_0^2 }{D\cdot \sqrt{2\cdot g} } \cdot \left( \sqrt{\dfrac{H}{2} } -0\right)

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The time it takes for the tank to empty the remaining half, t₂, is presented as follows;

t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} }

The total time, t, to empty the tank is given as follows;

t = t_1 + t_2 =   \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \left (\sqrt{2} -1 \right) + t_2  = { \dfrac{ D_0^2  }{D} \cdot\sqrt{\dfrac{H}{g} } =  \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} } \cdot \sqrt{2}

t =  \sqrt{2}  \cdot \dfrac{D_0^2 }{D^2 } \cdot \sqrt{ \dfrac{H}{g} }

3 0
3 years ago
In a heat-treating process, a 1-kg metal part, initially at 1075 K, is quenched in a closed tank containing 100 kg of water, ini
storchak [24]

Answer:

attached below

Explanation:

8 0
3 years ago
Other questions:
  • g A plane stress element has components sigma x = 160 MPa, tau xy = 100 MPa (CW). Determine the two values pf sigma y for which
    13·1 answer
  • A motor vehicle has a mass of 1.8 tonnes and its wheelbase is 3 m. The centre of gravity of the vehicle is situated in the centr
    14·1 answer
  • 2. In the above figure, what type of cylinder arrangement is shown in the figure above?
    9·2 answers
  • Find the difference between the first and third angle projection type.
    11·1 answer
  • Project 8:The Harris-Benedict equation estimates the number of calories your body needs to maintain your weight if you do no exe
    5·1 answer
  • Suppose that the voltage is reduced by 10 percent (to 90 VV). By what percentage is the power reduced? Assume that the resistanc
    10·1 answer
  • When welding stick (SMAW) what is the distance between top of bare end of electrode and base metal?
    7·1 answer
  • I need solution fast plesss​
    9·1 answer
  • Complete the following sentence.
    10·1 answer
  • Scientists use characteristics to compare stars. Match each characteristic on the left with the statement on the right that uses
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!