<h3>
Answer: The acceleration doubles</h3>
===========================================================
Explanation:
Consider a mass of 10 kg, so m = 10
Let's say we apply a net force of 20 newtons, so F = 20
The acceleration 'a' is...
F = ma
20 = 10a
20/10 = a
2 = a
a = 2
The acceleration is 2 m/s^2. Every second, the velocity increases by 10 m/s.
---------------
Now let's double the net force on the object
F = 20 goes to F = 40
m = 10 stays the same
F = ma
40 = 10a
10a = 40
a = 40/10
a = 4
The acceleration has also doubled since earlier it was a = 2, but now it's a = 4.
---------------
In summary, if you double the net force applied to the object, then the acceleration doubles as well.
Answer:
Since energy can be measured as work, we can write energy = force x distance. Thus SI derived unit of energy has the units of newtons x meter or kg m2/s2.
Explanation:
Form concentric circles around the wire
Answer:
You could use newton’s second law to calculate the force applied to an object if you knew the objects mass and its <u>acceleration.</u>
Explanation:
By, Newtons second law, the force applied on an object directly varies with the acceleration caused and the mass of the object.
This is given by :

Where
represents force applied on the object ,
represents mass of the object and
represents the acceleration.
In order to calculate force applied on object we require the mass of the object and its acceleration. The force can be calculated by finding the product of mass and acceleration of the object.
Distance for which the bike is ridden = 30 km
Speed at which the bike is driven = 0.75 km/minute
Let us assume the number of minutes taken to travel the distance of 30 km = x
Now we already know the formula of speed can be written as
Speed = Distance traveled/ Time taken
0.75 = 30/x
0.75x = 30
x = 30/0.75
= 40 minutes
So the time taken for riding a distance of 30 km will be 40 minutes. I hope this procedure is simple enough for you to understand.