Question is from B to C
Answer: (b) 1.5m/s
x1=3m, x2=9m
t1=1s, t2=5s
Displacement, ∆x=(9-3)m=6m
Time elapsed, ∆t=(5-1)s=4s
So average velocity v =∆x/∆t=6/4=1.5m/s
The distance travelled by the ball that is thrown horizontally from a window that is 15.4 meters high at a speed of 3.01 m/s is 5.34 m
s = ut + 1 / 2 at²
s = Distance
u = Initial velocity
t = Time
a = Acceleration
Vertically,
s = 15.4 m
u = 0
a = 9.8 m / s²
15.4 = 0 + ( 1 / 2 * 9.8 * t² )
t² = 3.14
t = 1.77 s
Horizontally,
u = 3.01 m / s
a = 0 ( Since there is no external force )
s = ( 3.01 * 1.77 ) + 0
s = 5.34 m
Therefore, the distance travelled by the ball before hitting the ground is 5.34 m
To know more about distance travelled
brainly.com/question/12696792
#SPJ1
False; the three major scales used to measure earthquakes are the Mercalli Scale, the Richter Scale, and the Magnitude Scale. I hope this helps!
Answer:
Could you explain that more better?
Explanation:
Answer:
Explanation:
Given that,
Frequency of radio signal is
f = 800kHz = 800,000 Hz.
Distance from transmitter
d = 8.5km = 8500m
Electric field amplitude
E = 0.9 V/m
The average energy density can be calculated using
U_E = ½•ϵo•E²
Where ϵo = 8.85 × 10^-12 F/m
Then,
U_E = ½ × 8.85 × 10^-12 × 0.9²
U_E = 3.58 × 10^-12 J/m²
The average electromagnetic energy density is 3.58 × 10^-12 J/m²