Hurricanes and tropical storms can also spawn tornadoes and microbursts, create storm surges ... If you are unable to evacuate, go to your wind-safe room.
<u>Answer:</u>
The statement is true statement
<u>Explanation:</u>
Tropical rainforests are dry and green throughout the year. Even between the day and the night, temperatures don't change much. in tropical rainforests The average temperature varies from 70 to 85 °F (21 to 30 °C) .
Throughout tropical rainforests, the climate is quite wet, maintaining a humidity level of 77% to 88% year around which is a high value. The annual rainfall is between 80 and 400 inches (200 and 1000 cm), that is 6-33 feets, and it can rain heavily. It can drain as much as 5 cm (2 inches) in an hour.
Answer:
The magnitude of the force the garbage exerts on the floor of the service elevator is 12 N
Explanation:
Given;
mass of the garbage, m = 10.0 kg
acceleration of the elevator, a = 1.2 m/s²
The magnitude of the force the garbage exerts on the floor of the service elevator is given by;
F = ma
F = 10 x 1.2
F = 12 N
Therefore, the magnitude of the force the garbage exerts on the floor of the service elevator is 12 N
Answer:
D
Explanation:
Because neap and spring tides happen twice a month during new moon and full moon .It occurs twice in a month which is 14 days
Answer:
R=4.22*10⁴km
Explanation:
The tangential speed
of the geosynchronous satellite is given by:

Because
is the circumference length (the distance traveled) and T is the period (the interval of time).
Now, we know that the centripetal force of an object undergoing uniform circular motion is given by:

If we substitute the expression for
in this formula, we get:

Since the centripetal force is the gravitational force
between the satellite and the Earth, we know that:
![F_g=\frac{GMm}{R^{2}}\\\\\implies \frac{GMm}{R^{2}}=\frac{4m\pi ^{2}R}{T^{2}}\\\\R^{3}=\frac{GMT^{2}}{4\pi^{2}} \\\\R=\sqrt[3]{\frac{GMT^{2}}{4\pi^{2}} }](https://tex.z-dn.net/?f=F_g%3D%5Cfrac%7BGMm%7D%7BR%5E%7B2%7D%7D%5C%5C%5C%5C%5Cimplies%20%5Cfrac%7BGMm%7D%7BR%5E%7B2%7D%7D%3D%5Cfrac%7B4m%5Cpi%20%5E%7B2%7DR%7D%7BT%5E%7B2%7D%7D%5C%5C%5C%5CR%5E%7B3%7D%3D%5Cfrac%7BGMT%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%20%5C%5C%5C%5CR%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGMT%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%20%7D)
Where G is the gravitational constant (
) and M is the mass of the Earth (
). Since the period of the geosynchronous satellite is 24 hours (equivalent to 86400 seconds), we finally can compute the radius of the satellite:
![R=\sqrt[3]{\frac{(6.67*10^{-11}Nm^{2}/kg^{2})(5.97*10^{24}kg)(86400s)^{2}}{4\pi^{2}}}\\\\R=4.22*10^{7}m=4.22*10^{4}km](https://tex.z-dn.net/?f=R%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%286.67%2A10%5E%7B-11%7DNm%5E%7B2%7D%2Fkg%5E%7B2%7D%29%285.97%2A10%5E%7B24%7Dkg%29%2886400s%29%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%7D%5C%5C%5C%5CR%3D4.22%2A10%5E%7B7%7Dm%3D4.22%2A10%5E%7B4%7Dkm)
This means that the radius of the orbit of a geosynchronous satellite that circles the earth is 4.22*10⁴km.