1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Roman55 [17]
3 years ago
14

A 60.watt light bulb runs for 5.0 seconds. How much energy does it use?

Physics
1 answer:
Free_Kalibri [48]3 years ago
3 0

"watt" means "Joule of energy per second"

"60 watts" means "60 Joules per second"

(60 joules per second) x (5 seconds) = <em>300 Joules of energy</em>

You might be interested in
Please HELP!!
Rudik [331]

Answer:

I think is 2.

Explanation:

(The entire range of wavelengths or frequencies of electromagnetic radiation extending from gamma rays to the longest radio waves and including visible light)

7 0
3 years ago
Un the way to the moon, the Apollo astro-
kherson [118]

Answer:

Distance =  345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

<u>Second part</u>

<u />

The distance between the Earth and this point is calculated as follows:

re = 3.84 108 - 38280860.6 = 345719139.4[m]

Now the acceleration can be found as follows:

a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2}  } \\a=3.33*10^{19} [m/s^2]

6 0
3 years ago
A bike rider pedals with constant acceleration to reach a velocity of 7.5 (vf)m/s over a time of 4.5 s(t). during the period of
BigorU [14]
<span>The initial velocity of the bike was 1.67 (vf)m/s. This is found by evaluating 7.5/4.5 which yields the velocity per unit of time which is equivalent to initial velocity.</span>
6 0
4 years ago
A vehicle reaches a speed of 7.5 m/s over 15 seconds. What is its acceleration if it
denpristay [2]

acceleration = \frac{velocity}{time}  = \frac{7.5}{15}  = 0.5ms^-^2

So the answer is option b.

8 0
3 years ago
How would you describe the motion of all three vehicles?​
Angelina_Jolie [31]

Answer:In physics, motion is defined as a change in the position of a body with respect to a reference point. ... Think about the motion of three cars: one in the fast-moving carpool lane, another in the middle lane, and the third in the slow lane used to enter or exit the freeway.

Explanation:

3 0
3 years ago
Other questions:
  • . (a) A world record was set for the men's 100-m dash in the 2008 Olympic Games in Beijing by Usain Bolt of Jamaica. Bolt "coast
    15·1 answer
  • A rod bent into the arc of a circle subtends an angle 2θ at the center P of the circle (see below). If the rod is charged unifor
    9·1 answer
  • What is the mass, in grams, of 2.90×10−3 mol of ammonium phosphate?
    14·2 answers
  • Magnetic resonance imaging needs a magnetic field strength of 1.5 T. The solenoid is 1.8 m long and 75 cm in diameter. It is tig
    6·2 answers
  • How can a small human retina detect objects larger than itself?
    12·2 answers
  • Practice with Density
    6·2 answers
  • What does overloading your muscles accomplish?
    12·2 answers
  • Which of the following electromagnets is the strongest? Why?​
    6·1 answer
  • A mass is hanging from the end of a horizontal bar that pivots around an axis through its center, but it is being held stationar
    10·1 answer
  • and area' Explain the following in your answers, use the words pressure', 'force A truck used in the desert has wide tyres. 6 A
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!