Answer:
a. 318.2k
b. 45.2kj
Explanation:
Heat transfer rate to an object is equal to the thermal conductivity of the material the object is made from, multiplied by the surface area in contact, multiplied by the difference in temperature between the two objects, divided by the thickness of the material.
See attachment for detailed analysis
A protective equipment which protects workers who are passing by from stray sparks or metal while another worker is welding is: E. Welding Screens.
A wielder refers to an individual who is saddled with responsibility of joining two or more metals together by wielding.
During the process of wielding, sparks and minute metallic objects are produced, which are usually hazardous to both the wielder and other workers within the vicinity.
Hence, the following protective equipment are meant to be worn or used directly by a wielder (worker) who is wielding:
However, a protective equipment which protects other workers who are passing by from stray sparks or metallic objects while wielder (worker) is welding is referred to as welding screens.
Find more information: brainly.com/question/15442363
Answer:
The elevation at the high point of the road is 12186.5 in ft.
Explanation:
The automobile weight is 2500 lbf.
The automobile increases its gravitational potential energy in
. It means the mobile has increased its elevation.
The initial elevation is of 5183 ft.
The first step is to convert Btu of potential energy to adequate units to work with data previously presented.
British Thermal Unit -
Now we have the gravitational potential energy in lbf*ft. Weight of the mobile is in lbf and the elevation is in ft. We can evaluate the expression for gravitational potential energy as follows:
Where m is the mass of the automobile, g is the gravity, W is the weight of the automobile showed in the problem.
is the final elevation and
is the initial elevation.
Replacing W in the Ep equation
Finally, the next step is to replace the variables of the problem.
The elevation at the high point of the road is 12186.5 in ft.
Answer:
b) The null hypothesis should be rejected.
Explanation:
The null hypothesis is that the mean shear strength of spot welds is at least
3.1 MPa
H0: u ≥3.1 MPa against the claim Ha: u< 3.1 MPa
The alternate hypothesis is that the mean shear strength of spot welds is less than 3.1 MPa.
This is one tailed test
The critical region Z(0.05) < ± 1.645
The Sample mean= x`= 3.07
The number of welds= n= 15
Standard Deviation= s= 0.069
Applying z test
z= x`-u/s/√n
z= 3.07-3.1/0.069/√15
z= -0.03/0.0178
z= -1.68
As the calculated z= -1.68 falls in the critical region Z(0.05) < ± 1.645 the null hypothesis is rejected and the alternate hypothesis is accepted that the mean shear strength of spot welds is less than 3.1 MPa
Answer:
0.4 gallons per second
Explanation:
A function shows the relationship between an independent variable and a dependent variable.
The independent variable (x values) are input variables i.e. they don't depend on other variables while the dependent variable (y values) are output variables i.e. they depend on other variables.
The rate of change or slope or constant of proportionality is the ratio of the dependent variable (y value) to the independent variable (x value).
Given that the garden hose fills a 2-gallon bucket in 5 seconds. The dependent variable = g = number of gallons, the independent variable = t = number of seconds.
Constant of proportionality = g / t = 2 / 5 = 0.4 gallons per second