1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
9

A smooth concrete pipe (1.5-ft diameter) carries water from a reservoir to an industrial treatment plant 1 mile away and dischar

ges it into the air over a holding tank. The pipe leaving the reservoir is 3 ft below the water surface and runs downhill on a 1:100 slope. Determine the flow rate (in cfs, ft3/s) if the water temperature is 40°F (4°C) and minor losses are negligible.
Engineering
1 answer:
Kamila [148]3 years ago
6 0

ANSWER:

Q = 0.17ft3/s

EXPLANATION: since the water runs downhill on a 1:100 slope, that means the flow is laminar.

Using poiseuille equation:

Q = (π × D^4 × ∆P) ÷ (128 × U × ∆X)

Q is the volume flow rate.

π is pie constant value at 3.142

D is the diameter of the pipe

∆P is the pressure drop

U is the viscosity

∆X is the length of the pipe or distance of flow.

Form the question, we are to determine U then Find Q

Therefore;

D = 1.5ft

∆P = 1pa since the minor losses are negligible.

∆X = 1mile = 5280ft.

STEP1: FIND U

Viscosity is a function of the temperature of the liquid. An increase in temperature increases the viscosity of the liquid.

We know that at room temperature, which is 25°C the viscosity of water is 8.9×10^-4pa.s . We can find the viscosity of water at 4°C by cross multiplying.

Therefore;

25°C = 8.9×10^-4pa.s

4°C = U

Cross multiply

U25°C = 4°C × 8.9×10^-4pa.s

U25°C = 0.00356°C.pa.s

Therefore;

U = 0.00356°C.pa.s ÷ 25°C

U = 1.424×10^-4pa.s

Therefore at 4°C the viscosity of water in the pipe is 1.424×10^-4pa.s

STEP2: FIND Q

Imputing the values into poiseuille equation above.

Q = (3.142 × (1.5ft)^4 × 1pa) ÷ (128 × 1.424×10^-4pa.s × 5280ft)

Q = 15.906375pa.ft4 ÷ 96.239616pa.s.ft

Therefore;

Q = 0.16547887ft3/s

Approximately;

Q = 0.17ft3/s

You might be interested in
The current in a 20 mH inductor is known to be: 푖푖=40푚푚푚푚푡푡≤0푖푖=푚푚1푒푒−10,000푡푡+푚푚2푒푒−40,000푡푡푚푚푡푡≥0The voltage across the induct
Anni [7]

Answer:

a) The expression for electrical current: i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

The expression for voltage: v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) For t<=0 the inductor is storing energy and for t > 0 the inductor is delivering energy.

Explanation:

The question text is corrupted. I found the complete question on the web and it goes as follow:

The current in a 20 mH inductor is known to be: i = 40 mA at t<=0 and i = A1*e^(-10,000*t) + A2*e^(-40,000*t) A at t>0. The voltage across the inductor (passive sign convention) is -68 V at t = 0.

a. Find the numerical expressions for i and v for t>0.

b. Specify the time intervals when the inductor is storing energy and is delivering energy.

A inductor stores energy in the form of a magnetic field, it behaves in a way that oposes sudden changes in the electric current that flows through it, therefore at moment just after t = 0, that for convenience we'll call t = 0+, the current should be the same as t=0, so:

i = A1*e^(-10,000*(0)) + A2*e^(-40,000*(0))

40*10^(-3) = A1*e^(-10,000*0) + A2*e^(-40,000*0)

40*10^(-3) = (A1)*1 + (A2)*1

40*10^(-3) = A1 + A2

A1 + A2 = 40*10^(-3)

Since we have two variables (A1 and A2) we need another equation to be able to solve for both. For that reason we will use the voltage expression for a inductor, that is:

V = L*di/dt

We have the voltage drop across the inductor at t=0 and we know that the current at t=0 and the following moments after that should be equal, so we can use the current equation for t > 0 to find the derivative on that point, so:

di/dt = d(A1*e^(-10,000*t) + A2*e^(-40,000*t))/dt

di/dt = [d(-10,000*t)/dt]*A1*e^(-10,000*t) + [d(-40,000*t)/dt]*A2*e^(-40,000*t)

di/dt = -10,000*A1*e^(-10,000*t) -40,000*A2*e^(-40,000*t)

By applying t = 0 to this expression we have:

di/dt (at t = 0) = -10,000*A1*e^(-10,000*0) - 40,000*A2*e^(-40,000*0)

di/dt (at t = 0) = -10,000*A1*e^0 - 40,000*A2*e^0

di/dt (at t = 0) = -10,000*A1- 40,000*A2

We can now use the voltage equation for the inductor at t=0, that is:

v = L di/dt (at t=0)

68 = [20*10^(-3)]*(-10,000*A1 - 40,000*A2)

68 = -400*A1 -800*A2

-400*A1 - 800*A2 = 68

We now have a system with two equations and two variable, therefore we can solve it for both:

A1 + A2 = 40*10^(-3)

-400*A1 - 800*A2 = 68

Using the first equation we have:

A1 = 40*10^(-3) - A2

We can apply this to the second equation to solve for A2:

-400*[40*10^(-3) - A2] - 800*A2 = 68

-1.6 + 400*A2 - 800*A2 = 68

-1.6 -400*A2 = 68

-400*A2 = 68 + 1.6

A2 = 69.6/400 = 0.174

We use this value of A2 to calculate A1:

A1 = 40*10^(-3) - 0.174 = -0.134

Applying these values on the expression we have the equations for both the current and tension on the inductor:

i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

v = [20*10^(-3)]*[-10,000*(-0.134)*e^(-10,000*t) -40,000*(0.174)*e^(-40,000*t)]

v = [20*10^(-3)]*[1340*e^(-10,000*t) - 6960*e^(-40,000*t)]

v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) The question states that the current for the inductor at t > 0 is a exponential powered by negative numbers it is expected that its current will reach 0 at t = infinity. So, from t =0 to t = infinity the inductor is delivering energy. Since at time t = 0 the inductor already has a current flow of 40 mA and a voltage, we can assume it already had energy stored, therefore for t<0 it is storing energy.

8 0
3 years ago
python Write a program that asks a user to type in two strings and that prints •the characters that occur in both strings. •the
Yuliya22 [10]

Answer:

see explanation

Explanation:

#we first get the elements as inputs

x = input("enter string A :")

y = input("enter string B :")

#then we make independent sets with each

x = set(x)

y = set(y)

#then the intersection of the two sets

intersection = set.intersection(x,y)

#another set for the alphabet

#we use set.difference to get the elements present in x and not in y, and

#viceversa, finally we get the difference between the alphabet and the #intersection of the elements in our strings

z = set('abcdefghijklmnopqrstuvwxyz')

print('\nrepeated :\n',intersection)

print('differences :\n',' Items in A and not B\n',

set.difference(x,y),'\nItems in B and not A\n',

set.difference(y,x))

print('\nItems in neither :\n',set.difference(z,intersection))

8 0
3 years ago
Supercharged engine what it does to the car
geniusboy [140]

Answer:

A supercharger is an air compressor that increases the pressure or density of air supplied to an internal combustion engine. This gives each intake cycle of the engine more oxygen, letting it burn more fuel and do more work, thus increasing power.

Explanation:

3 0
3 years ago
Read 2 more answers
HELP! Need the correct answer ASAP! Thanks
Bess [88]

Answer:

i think it might be answer b

Explanation:

7 0
3 years ago
Read 2 more answers
True or False; The Neutrons in an atom have a neutral charge.​
yanalaym [24]

Answer:

true

Explanation:

if it is not true it is false

3 0
3 years ago
Read 2 more answers
Other questions:
  • Vehicles arrive at a single toll booth beginning at 8:00 A.M. They arrive and depart according to a uniform deterministic distri
    9·1 answer
  • According to information found in an old hydraulies book, the energy loss per unit weight of fluid flowing through a nozzle conn
    6·1 answer
  • Technician A says that a voltage drop of 0.8 volts on the starter ground circuit is within specifications. Technician B says tha
    13·1 answer
  • The conditions at the beginning of compression in an Otto engine operating on hot-air standard with k=1.35 and 101.325 kPa, 0.05
    10·1 answer
  • Describe the are of mechanical engineering
    6·2 answers
  • BIG POINTS AND WILL GIVE BRAINLIEST! Answer all 5 please or I can’t give brainliest and might report!
    10·1 answer
  • How many times has the ITU-R revised the CCIR 601 international standard? A. four B. five C. six D. seven
    8·1 answer
  • Air entrainment is used in concrete to: __________.
    11·1 answer
  • What speeds did john j montgomerys gliders reach
    12·1 answer
  • What is an advantage of a nuclear-fission reactor?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!