1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pepsi [2]
3 years ago
12

A safety interlock module operates by monitoring the voltage from the

Engineering
1 answer:
In-s [12.5K]3 years ago
8 0

Answer: its an Ignition coil

You might be interested in
A piston–cylinder device contains a mixture of 0.5 kg of H2 and 1.2 kg of N2 at 100 kPa and 300 K. Heat is now transferred to th
Taya2010 [7]

Answer:

(a) The heat transferred is 2552.64 kJ    

(b) The entropy change of the mixture is 1066.0279 J/K

Explanation:

Here we have

Molar mass of H₂ = 2.01588 g/mol

Molar mass of N₂ = 28.0134 g/mol

Number of moles of H₂ = 500/2.01588  = 248 moles

Number of moles of N₂ = 1200/28.0134 = 42.8 moles

P·V = n·R·T

V₁ = n·R·T/P = 290.8×8.3145×300/100000 = 7.25 m³

Since the volume is doubled then

V₂ = 2 × 7.25 = 14.51 m³

At constant pressure, the temperature is doubled, therefore

T₂ = 600 K

If we assume constant specific heat at the average temperature, we have

Heat supplied = m₁×cp₁×dT₁ + m₂×cp₂×dT₂

 cp₁ = Specific heat of hydrogen at constant pressure = 14.50 kJ/(kg K

cp₂ = Specific heat of nitrogen at constant pressure = 1.049 kJ/(kg K

Heat supplied = 0.5×14.50×300 K+ 1.2×1.049×300 =  2552.64 kJ    

b)  \Delta S = - R(n_A \times lnx_A + n_B \times ln x_B)

Where:

x_A and x_B are the mole fractions of Hydrogen and nitrogen respectively.

Therefore, x_A = 248 /(248 + 42.8) = 0.83

x_B = 42.8/(248 + 42.8) = 0.1472

∴ \Delta S = - 8.3145(248 \times ln0.83 + 42.8 \times ln 0.1472) =  1066.0279 J/K

5 0
3 years ago
What is the best way to submit your assignments?
Mrac [35]
A. Email your teacher right away. It would be the safest option.
4 0
3 years ago
Read 2 more answers
If a vacuum gau ge reads 9.62 psi, it means that: a. the very highest column of mercury it could support would be 19.58 inches.
scZoUnD [109]

Answer:All of the above

Explanation:

9.62 psi means 497.49 mm of Hg pressure

for (a)19.58 inches is equals to 497.49 mm of Hg

(b)atmospheric pressure is 14.69 psi

vaccum gauge is 9.62psi

absolute pressure is=14.69-9.62=5.07

(c)vaccum means air is sucked and there is negative pressure so it tells about below atmospheric pressure.

thus all are correct

8 0
3 years ago
The formula for calculating risk considering risk perception is ?​
s2008m [1.1K]

Answer:

risk = probability x loss

Explanation:

3 0
3 years ago
Suppose that you can throw a projectile at a large enough v0 so that it can hit a target a distance R downrange. Given that you
viktelen [127]

Answer:

\theta_1=15^o\\\theta_2=75^o

Explanation:

<u>Projectile Motion</u>

In projectile motion, there are two separate components of the acceleration, velocity and displacement. The horizontal component has zero acceleration (assuming no friction), and the acceleration in the vertical direction is always the acceleration of gravity. The basic formulas are shown below:

V_x=V_{ox}=V_ocos\theta

Where \theta is the angle of launch respect to the positive horizontal direction and Vo is the initial speed.

V_y=V_{oy}-gt=V_osin\theta-gt

The  horizontal and vertical distances are, respectively:

x=V_{o}cos\theta t

\displaystyle y=y_o+V_{o}sin\theta t-\frac{gt^2}{2}

The total flight time can be found as that when y = 0, i.e. when the object comes back to ground (or launch) level. From the above equation we find

\displaystyle t_f=\frac{2V_osin\theta}{g}

Using this time in the horizontal distance, we find the Range or maximum horizontal distance:

\displaystyle R=\frac{V_o^2sin2\theta}{g}

Let's solve for \theta

\displaystyle sin2\theta=\frac{R.g}{V_o^2}

This is the general expression to determine the angles at which the projectile can be launched to hit the target. Recall the angle can have to values for fixed positive values of its sine:

\displaystyle \theta_1=\frac{asin\left(\frac{R.g}{V_o^2}\right)}{2}

\displaystyle \theta_2=\frac{180^o-asin\left(\frac{R.g}{V_o^2}\right)}{2}

Or equivalently:

\theta_2=90^o-\theta_1

Given Vo=37 m/s and R=70 m

\displaystyle \theta_1=\frac{asin\left(\frac{70\times 9.8}{37^2}\right)}{2}

\theta_1=15^o

And

\theta_2=90^o-15^o=75^o

5 0
3 years ago
Other questions:
  • Why should engineers avoid obvious patterns?
    13·2 answers
  • . A storm sewer is carrying snow melt containing 1.200 g/L of sodium chloride into a small stream. The stream has a naturally oc
    8·1 answer
  • I need solution for this question please ​
    7·2 answers
  • In this assignment, you will write a user interface for your calculator using JavaFX. Your graphical user interface (GUI) should
    11·1 answer
  • B1) 20 pts. The thickness of each of the two sheets to be resistance spot welded is 3.5 mm. It is desired to form a weld nugget
    8·1 answer
  • PLEASE HELP ASAP!!! Thanks
    11·1 answer
  • Design drawings use line styles of up to eight different varieties to communicate important information about the item. true or
    7·1 answer
  • What is applied technology?
    14·1 answer
  • A continuously variable transmission:
    13·1 answer
  • The primary of an ideal transformer has 400 turns and its secondary has 200 turns. Neglecting electrical losses, if the power in
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!