This problem is requiring the balanced chemical equation that takes place when copper hydroxide and potassium sulfate are produced when reacting potassium hydroxide with copper sulfate.
<h3>Balancing chemical equations:</h3>
In chemistry, balancing chemical equations is based on the law of conservation of mass, which demands us to have equal number of atoms on both sides of the chemical equation. This can be accomplished by inserting coefficients in front of the chemical species.
For this particular case, we have potassium hydroxide with copper sulfate on the reactants side, however, copper can be copper (I) or copper (II) as it has 1+ and 2+ as its possible oxidation numbers. In addition, copper hydroxide and potassium sulfate as the products. Hence, we can assume this is all about copper (II) so we can write:

As we can see, potassium, hydrogen and oxygen have two atoms each on the products side, but just one on the reactants side; drawback we can overcome by putting a 2 in front of KOH so as to balance it:

Learn more about balancing chemical equations: brainly.com/question/8062886
Hexane and 2-methylpentane. If you draw the structures out, you can see that both isomers have 6 carbon atoms and 14 hydrogen atoms. Hence they have the same molecular formula but a different structural formula. I suggest drawing the compounds out for these types of questions to visualise it.
Answer:
to VSEPR theory, the shape of a molecule is related to the organization of the central atom's valence shell electrons. The valence shell electrons are all negatively charged and therefore are constantly repelling each other. This repulsion is what gives a molecule its three-dimensional shape.
To Find :
Number of moles of C₃H₆O present in a sample weighing 25.6 grams.
Solution :
Molecular mass of C₃H₆O is :
M = (6×12) + (6×1) + (16×1) grams
M = 94 grams/mol
We know, number of moles of 25.6 grams of C₃H₆O is :

Hence, this is the required solution.