Answer:
1200KJ
Explanation:
The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.
P (rotor-loss) = 3 x K.E
P = 3 x 300 = 900 KJ
After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;
KE = 300 KJ
Since it is in opposite direction, it will also add up to rotor loss
P ( rotor loss ) = 900 + 300 = 1200 KJ
Answer:
Explanation:
The python code to generate this is quite simple to run.
i hope you understand everything written here, you can as well try out other problems to understand better.
First to begin, we import the package;
Code:
import pandas as pd
import matplotlib.pyplot as plt
name = input('Enter name of the file: ')
op = input('Enter name of output file: ')
df = pd.read_csv(name)
df['Date'] = pd.to_datetime(df["Date"].apply(str))
plt.plot(df['Date'],df['Absent']/(df['Present']+df['Absent']+df['Released']),label="% Absent")
plt.legend(loc="upper right")
plt.xticks(rotation=20)
plt.savefig(op)
plt.show()
This should generate the data(plot) as seen in the uploaded screenshot.
thanks i hope this helps!!!
Answer:
a) 280MPa
b) -100MPa
c) -0.35
d) 380 MPa
Explanation:
GIVEN DATA:
mean stress 
stress amplitude 
a) 
--------------1

-----------2
solving 1 and 2 equation we get

b) 
c)
stress ratio

d)magnitude of stress range

= 280 -(-100) = 380 MPa
Answer:
1. Poor circuit protection
2.Grounding issue
3. lighting problem
4. Electrical shocks
5. High electricity bills
Explanation:
Answer:
Efficiency based on Otto cycle.
Effotto = 47.47%
Explanation:
Efficiency based on Otto cycle.
effotto = 1 – (V2 / V1)^γ-1
effotto = 1 – (1 / 5)^1.4 - 1
effotto = 47.47%