Answer:
4 times the mass of Earth
Explanation:
= Mass of Earth
= Mass of the other planet
r = Radius of Earth
2r = Radius of the other planet
m = Mass of object
The force of gravity on an object on Earth is

The force of gravity on an object on the other planet is

As the forces are equal

So, the other planet would have 4 times the mass of Earth
Answer:
option a
Explanation:
Size of an atom (diameter) = 10⁻¹⁰ m
There are approximately 10²² atoms in a single drop of water. If they are put in a straight line, the length would be
l = diameter of an atom × number of atoms
l = 10²²× 10⁻¹⁰ m = 10¹² m
Distance between the Sun and the Earth is 1.47 × 10¹¹ m. The calculated length is greater than the distance between the Sun and the Earth.
Thus, option a is correct.
Answer:
0.0334N
Explanation:
Given parameters:
M1 = 5 x 10⁶kg
M2 = 1 x 10⁶kg
Distance = 100m
Unknown:
Gravitational force = ?
Solution:
To solve this problem, we use the Newton's law of universal gravitation.
Fg =
G is the universal gravitation constant
m is the mass
r is the distance
Fg =
= 0.0334N
1. C. Upper Left
2. B. For about 90% of their lifetime