Answer: 11.0 g of calcium will react with 10.0 grams of water.
Explanation:
To calculate the moles, we use the equation:
moles of
The balanced chemical equation is:
According to stoichiometry :
2 moles of
require = 1 mole of
Thus 0.55 moles of
require=
of
Mass of
Thus 11.0 g of calcium will react with 10.0 grams of water.
Answer:
the answer is d .
Explanation:
all of these have pollutants and chemicals in them , damaging the ozone with carbon dioxide .
Answer:
- <em>Oxidation half-reaction</em>:
Fe²⁺(aq) → Fe³⁺(aq) + 1e⁻
- <em>Reduction half-reaction</em>:
Ce⁴⁺(aq) + 1e⁻ → Ce³⁺(aq)
Explanation:
The reaction that takes place is:
- Fe²⁺(aq) + Ce⁴⁺(aq) → Fe³⁺(aq) + Ce³⁺(aq)
The <em>oxidation half-reaction</em> is:
- Fe²⁺(aq) → Fe³⁺(aq) + 1e⁻
It is an oxidation because the oxidation state of Fe increases from 2+ to 3+.
The <em>reduction half-reaction</em> is:
- Ce⁴⁺(aq) + 1e⁻ → Ce³⁺(aq)
It is a reduction because the oxidation state of Ce decreases from 4+ to 3+.
A bowling ball.
definition of dense-closely compacted in substance
The number of mole will be 65.81 mole.
An ideal gas would be one for which both the overall volume of the molecules and even the forces that exist between them are so negligible as to have no influence on the behavior of something like the gas.
Number of ideal gas can be calculated by using the formula:
PV = nRT
where, p is pressure, n is number of mole, R is gas constant and T is temperature.
Given data:
V= 1750
= 1750 L
P = 125,000 p = 1.2 atm
R = 0.082 L /mole kelvin
T = 273+127 = 400 K
Now, put the value of given data in above equation.
1.23atm x 1750L = n x 0.0820atm x Liter/ mole x kelvin x 400K
n = 65.81 mole.
Therefore, the number of mole will be 65.81 mole
To know more about mole
brainly.com/question/21050624
#SPJ4