Answer:
Explanation:
mass fraction N₂ : He : CH₄ : C₂H₆ : : 15 : 5 : 60 : 20
mole fraction N₂ : He : CH₄ : C₂H₆ : : 15/28 : 5/4 : 60/16 : 20/30
mole fraction N₂ : He : CH₄ : C₂H₆ : : .5357 : 1.25 : 3.75 : .67
Total mole fractions = .5357 + 1.25 + 3.75 + 0.67 = 6.2057
mole fraction of N₂ = .5357 / 6.2057 = .0877
mole fraction of He = 1.25 / 6.2057 = .20
mole fraction of CH₄ = 3.75 / 6.2057 = .6043
mole fraction of C₂H₆ = .67 / 6.2057 = .108
Partial pressure = total pressure x mole fraction
Partial pressure of N₂ = 1200 kPa x .0877 = 105.24 kPa
Partial pressure of He = 1200 kPa x .20 = 240 kPa
Partial pressure of CH₄ = 1200 kPa x .6043 = 725.16 kPa
Partial pressure of C₂H₆ = 1200 kPa x .108 = 129.6 kPa
Answer:
An excellent experiment is to heat sodium thiosulfate in a water bath. The solid crystals will dissolve into the water in the hydrated crystals forming a supersaturated solution. ... Placing a small crystal in the supersaturated solution will cause the liquid to turn solid.
Answer;
= 64561.95 g/mole
Explanation;
mass of Fe in 100g = .346g
= .346 / 55.8452 moles
= 0.0061957 moles
These represent 4 moles of Fe in the molecule so moles of hemaglobin
= 0.0061957/4
= 0.0015489 moles
these are in 100 g so mass of 1 mole = 100 / 0.0015489
= 64561.95 g / mole
molar mass of hemoglobin = 64561.95 g/mole