The answer is (4) at the cathode, where reduction occurs. The Na+ gains one electron and become Na(l). So the reaction occurs at cathode and is reduction reaction.
Pressure caused by high temperatures are balanced by gravity
Answer:
The beaker holds 307.94 mL
Explanation:
As we know that the volume that beaker hold is the volume of water that occupied by it.
For this first we have to find mass of the water in the beaker
This can be calculated by the subtraction of beaker's weight from the weight of beaker and water.
weight of water (m) = total weight - weight of beaker
Empty weight of beaker = 25.91 g
Weight of beaker with water = 333.85 g
Weight of water = 333.85 - 25.91 = 307.94 g
Density of water = 1 g/mL
We have
Mass = Volume x density
307.94 = Volume x 1
Volume = 307.94 mL
The beaker holds 307.94 mL
Answer:
Explanation:
To calculate the cell potential we use the relation:
Eº cell = Eº oxidation + Eº reduction
Now in order to determine which of the species is going to be oxidized, we have to remember that the more the value of the reduction potential is negative, the greater its tendency to be oxidized is. In electrochemistry we use the values of the reductions potential in the tables for simplicity because the only thing we need to do is change the sign of the reduction potential for the oxized species .
So the species that is going to be oxidized is the Aluminium, and therefore:
Eº cell = -( -1.66 V ) + 0.340 V = 5.06 V
Equally valid is to write the equation as:
Eº cell = Eº reduction for the reduced species - Eº reduction for the oxidized species
These two expressions are equivalent, choose the one you fell more comfortable but be careful with the signs.
Negative charge
(+1)+(0)+(-1)+(-1)= -1